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Abstract
Background  Barth syndrome (BTHS) is a rare genetic disease that is characterized by cardiomyopathy, skeletal 
myopathy, neutropenia, and growth abnormalities and often leads to death in childhood. Recently, elamipretide has 
been tested as a potential first disease-modifying drug. This study aimed to identify patients with BTHS who may 
respond to elamipretide, based on continuous physiological measurements acquired through wearable devices.

Results  Data from a randomized, double-blind, placebo-controlled crossover trial of 12 patients with BTHS were 
used, including physiological time series data measured using a wearable device (heart rate, respiratory rate, activity, 
and posture) and functional scores. The latter included the 6-minute walk test (6MWT), Patient-Reported Outcomes 
Measurement Information System (PROMIS) fatigue score, SWAY Balance Mobile Application score (SWAY balance 
score), BTHS Symptom Assessment (BTHS-SA) Total Fatigue score, muscle strength by handheld dynamometry, 5 
times sit-and-stand test (5XSST), and monolysocardiolipin to cardiolipin ratio (MLCL:CL). Groups were created through 
median split of the functional scores into “highest score” and “lowest score”, and “best response to elamipretide” and 
“worst response to elamipretide”. Agglomerative hierarchical clustering (AHC) models were implemented to assess 
whether physiological data could classify patients according to functional status and distinguish non-responders from 
responders to elamipretide. AHC models clustered patients according to their functional status with accuracies of 
60–93%, with the greatest accuracies for 6MWT (93%), PROMIS (87%), and SWAY balance score (80%). Another set of 
AHC models clustered patients with respect to their response to treatment with elamipretide with perfect accuracy 
(all 100%).

Conclusions  In this proof-of-concept study, we demonstrated that continuously acquired physiological 
measurements from wearable devices can be used to predict functional status and response to treatment among 
patients with BTHS.
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Background
Barth syndrome (BTHS) is a rare X-linked genetic dis-
ease which occurs in approximately 1 in 1,000,000 male 
live births. Typical features of BTHS are cardiomyopathy, 
skeletal muscle weakness, growth retardation, neutro-
penia, and increased urinary excretion of 3-methylglu-
taconic acid [1, 2]. The underlying cause of BTHS has 
been traced to mutations or deletions in the tafazzin 
(TAZ) gene [3]. TAZ encodes a mitochondrial enzyme 
that remodels the acyl chains of newly synthesized car-
diolipin, which is a principal phospholipid in the inner 
mitochondrial membrane [4]. Reduced tafazzin activity 
negatively affects remodeling of cardiolipin, thus per-
turbing various cardiolipin-dependent mitochondrial 
functions such as organization of the respiratory chain 
and maintenance of cristae morphology [5].

Elamipretide is a synthetic lipophilic tetrapeptide with 
high cell permeability [6]. Being the first compound to 
target phospholipids on membranes rather than target 
peptides, elamipretide interacts primarily with cardio-
lipin in the inner mitochondrial membrane by hydro-
phobic or electrostatic binding [7]. Preclinical studies 
have demonstrated that this interaction can improve 
mitochondrial respiratory function and increase energy 
production [8–10]. In a recent randomized, double-
blind, placebo-controlled crossover trial [11], the effect 
of elamipretide was tested in 12 subjects with BTHS. The 
trial results showed that a total of 48 weeks of exposure 
to elamipretide resulted in a significant improvement in 
performance on the 6-minute walk test (6MWT) and 
BTHS Symptom Assessment (BTHS-SA) scale, as well 
as increases in cardiac stroke volumes. However, not all 
patients responded equally well to this therapy.

The widespread availability of real-time physiological 
data on various health metrics such as heart rate (HR) 
and respiratory rate (RR) presents a significant oppor-
tunity for data mining and machine learning to answer 
important clinical questions [12]. As an example, a recent 
report demonstrated the successful implementation of 
a convolutional neural network to detect coronavirus 
disease 19 (COVID-19) on any specific day given time 
series data of vital signs for that day and the preceding 
4 days [13]. In the present study, we examined the cor-
relation of HR, RR, activity, and posture measured using 
a wearable device with functional status. We then inves-
tigated whether hierarchical clustering based on features 
extracted from these time series data allows to distin-
guish non-responders from responders to elamipretide 
among patients with BTHS.

Methods
Patient sample and data sources
This study used data collected for the phase 2/3 random-
ized, double-blind, placebo-controlled crossover trial 

followed by an open-label treatment extension that eval-
uated the safety, tolerability, and efficacy of subcutane-
ous injections of elamipretide in subjects with genetically 
confirmed BTHS (Clinicaltrials.gov NCT03098797). This 
was a sponsor-initiated, single-site trial conducted at the 
Johns Hopkins Hospital. The summary results of the trial 
have been published previously [11]. Briefly, 12 subjects 
with BTHS were randomized (1:1) to one of two sequence 
groups: 12 weeks of single daily subcutaneous doses of 
40  mg elamipretide in treatment period 1 followed by 
12 weeks of treatment with placebo in treatment period 
2 (separated by 4-week washout period), or vice versa. 
In the second part of the trial, the open-label extension 
trial, 10 patients continued to receive elamipretide for 36 
additional weeks. Two of these patients left the trial due 
to injection site reactions, such that complete follow-up 
data for all outcomes was available through 36 weeks into 
the second part in 8 patients.

Participants were seen at 5 clinical visits: the screening 
visit (Screening), the baseline visit for treatment period 1 
(Base1), the 12 week visit for treatment period 1 (End1), 
the baseline visit for treatment period 2 (Base2), and the 
12 week visit for treatment period 2 (End2). At each of 
these visits, the patients were provided with an AVIVO™ 
mobile patient management system (Medtronic Inc.). 
This system is a wearable device intended to continuously 
measure, record and periodically transmit physiologi-
cal data including electrocardiography and accelerom-
etry. Participants were instructed to wear the System for 
approximately 7 consecutive days after the Screening, 
Base1 and Base2 visits and before the End1 and End2 
visits. All data from the wearable device were complete, 
except for two patients who had no recordings at the 
End2 visit.

Outcome measures included the following: 6MWT 
[14], Patient-Reported Outcomes Measurement Infor-
mation System (PROMIS) fatigue score, SWAY Bal-
ance Mobile Application score (SWAY balance score) 
[15, 16], BTHS-SA, knee extensor muscle strength as 
measured by handheld dynamometry (HHD) [17], 5 
times sit-to-stand test (5XSST), and the elevation of the 
monolysocardiolipin to cardiolipin ratio (MLCL:CL). 
Assessments were performed at the Base1, End1, and 
End2 visits. In the present study, groups were created 
through median split of these outcomes in two differ-
ent ways. First, the data from Base1, End1, and End2 
were merged and dichotomized, assigning each patient 
out of 30 observation (3 visits of 10 patients) into two 
groups based on their outcome value (“highest score” and 
“lowest score”). Second, the baseline outcome (Base1 or 
Base2 depending on crossover trial allocation) was sub-
tracted from post-elamipretide outcome (End1 or End2 
depending on crossover trial allocation) to isolate the 
effect of elamipretide; groups were then again created 
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according to response to elamipretide (“best response 
to elamipretide” [later referred to as “responders”] and 
“worst response to elamipretide” [later referred to as 
“non-responders”]).

Study design and objectives
The current study focused on examining the collected 
data to detect hidden structure in physiological mea-
surements as a means of unfolding and thus describ-
ing heterogeneity in treatment response to elamipretide 
in patients with BTHS. For this purpose, the study first 
assessed whether features extracted from time series 
data of each of the 3 study visits (Base1, End1, and End2) 
could classify patients according to functional status 
(“highest score” and “lowest score”). Secondly, we applied 
hierarchical clustering to select features that can ade-
quately distinguish “responders” from “non-responders” 
to elamipretide.

Feature processing, extraction, and selection
Physiological measurements from the wearable device 
considered for our analysis included: minimum, maxi-
mum, and mean HR (one measurement recorded every 
5  min in beats per minute); RR (one measurement 
recorded every 15  min in breaths per minute); activity 
duration defined as the time during which the patient 
was active within each 4-hour registration period (one 
measurement recorded every 4  h in seconds); activity 
intensity defined as the percent of target HR (220 beats 
per minute minus age) which was reached during activ-
ity (one measurement recorded every 4  h); and pos-
ture defined as the percent of time that the patient was 
standing upright (one measurement recorded every 4  h 
in degrees). Another measurement, workload, was cal-
culated by multiplying activity duration and intensity 
measurements.

The time series of minimum, maximum, and mean HR 
as well as RR were split into day (7am to 10pm) and night 
time (10pm to 7am) series. Time series data from only the 
first full 3 consecutive days of each visit were considered 
throughout the analysis. The Python package “tsfresh” 
[18] was employed to implement feature engineering of 
the time series data and extract approximately 790 higher 
dimensional temporal features from each of the series. 
These features provide insights into the physiological 
variables (PVs) and their dynamics. The extracted fea-
tures included autocorrelation, time series quantiles, 
spectral, Fourier, linear, non-linear, polynomial, wavelet 
and entropy, etc. that lend themselves to clustering or 
any other machine learning analysis. Six descriptive sta-
tistical measures including mean, variance, minimum, 
maximum, 25th and 75th percentiles were extracted from 
activity duration, activity intensity, workload, and pos-
ture measurements for each visit.

Given the large number of features generated with 
tsfresh package, dimensionality reduction and the selec-
tion of outcome-specific relevant features was necessary 
to fine-tune and achieve optimal machine learning model 
performance. For this purpose, the features obtained 
from the tsfresh package were filtered for multi-collin-
earity with a correlation score greater than 0.9 to obtain 
reliable estimates from the model. We then used Select-
KBest() from scikit-learn (https://scikit-learn.org/stable/
index.html), a univariate feature selection method which 
analyses the relationships between the features, outcome 
and sort features according to their p-value. Post sorting, 
we chose to consider only statistically significant features 
(p ≤ 0.05) for unsupervised cluster analysis.

Hierarchical clustering
The selected statistically significant features were stan-
dardized and fed into agglomerative hierarchical clus-
tering (AHC) models using Seaborn v0.11.2 [19]. A 
clustermap illustrates patients with similar physiological 
patterns mapped according to (i) functional status, in the 
first objective of the study, and (ii) outcome response to 
elamipretide, in the second objective of the study. The 
mapping is based on a similarity distance metric between 
the patients’ group identity and physiological measure-
ments from the wearable device at each clinical visit. As 
a result, patients with both highly correlated outcome 
value response and similar PVs were clustered. We chose 
standardized Euclidean metric with complete linkage 
method for each of the developed AHC models, allowing 
for direct comparability. All statistical analyses were per-
formed using Python v3.9.

Results
Physiological data accurately classify patients according to 
functional status
The first analysis was to assess whether the physiological 
measures from the wearable device correlated with func-
tional status. Clustering performance was assessed with 
the data from 3 clinical visits (Base1, End1, and End2) of 
10 patients who were screened for baseline values and 
received both placebo and elamipretide during the trial 
(2 patients with incomplete data were excluded). Out-
come data from these 3 visits were merged and dichoto-
mized with a median split, assigning the 30 observations 
(10 patients per visit) into two groups based on their out-
come value (“highest score” and “lowest score”).

AHC models were implemented to map similar sub-
jects into two clusters and interface with a set of PVs 
which were filtered with respect to an assessed outcome. 
These two clusters were then assessed with the true labels 
from the median split groups of the outcome variable to 
calculate AHC accuracy. The AHC models clustered the 
patients into groups above and below median value of 

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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outcome with accuracies ranging from 60 to 93% (Fig. 1; 
Table  1). The greatest accuracies were observed for 
6MWT (93%), PROMIS fatigue score (87%), and SWAY 
balance score (80%). A mean of 218 PVs (range 167–
271) were clustered with 30 observations (3 visits in 10 
patients) to observe the distinguishable pattern observed 

in Fig.  1 (Table  1). The most commonly included PVs 
were those related to nighttime max HR (13.1%), night-
time min HR (12.7%), daytime RR (12.6%), daytime min 
HR (12.3%), and daytime max HR (12.0%) (Fig.  2A and 
B).

Table 1  Performance of agglomerative hierarchical clustering models: according to functional status. Performance metrics 
of three agglomerative hierarchical clustering models in clustering 30 observations (3 visits in 10 participants) with respect to their 
outcome value. 5XSST, 5 times sit-to-stand test; 6MWT, 6-minute walking test; BTHS-SA, Barth Syndrome Symptom Assessment; HHD, 
handheld dynamometry; MLCL:CL, monolysocardiolipin to cardiolipin ratio; PROMIS, Patient-Reported Outcomes Measurement 
Information System; PV, physiological variable
Outcome measure True Negative False Positive False Negative True Positive Accuracy

(%)
Number 
of PVs

6MWT 14 1 1 14 93 205

PROMIS Fatigue score 13 2 2 13 87 195

SWAY Balance score 12 3 3 12 80 232

BTHS-SA Total Fatigue 9 6 6 9 60 214

Muscle Strength by 
HHD

9 6 6 9 60 271

5XSST 11 4 4 11 73 244

MLCL:CL 10 5 5 10 67 167

Fig. 1  Clustering patients according to functional status. Agglomerative hierarchical clustering with standardized Euclidean distance metric and 
complete linkage method. Clustermap of 30 participants interfaced with PVs based on their similarity mapped into two groups below and above median 
value of each of the 7 outcomes: (A) 6MWT, (B) PROMIS fatigue score, (C) SWAY balance score, (D) BTHS-SA, (E) Muscle strength by HHD, (F) 5XSST, and 
(G) MLCL:CL. Yellow dotted line area in (A) represent the set of PVs with high expression level of similarity only for one group of functional status. 5XSST, 5 
times sit-to-stand test; 6MWT, 6-minute walking test; BTHS-SA, Barth Syndrome Symptom Assessment; HHD, handheld dynamometry; MLCL:CL, monoly-
socardiolipin to cardiolipin ratio; PROMIS, Patient-Reported Outcomes Measurement Information System; PV, physiological variable
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Physiological data accurately classify patients according to 
response to elamipretide
The second objective of the analysis was to apply hier-
archical clustering to select features that can ade-
quately distinguish non-responders from responders to 
elamipretide. The outcomes in this analysis were assessed 
by subtracting the baseline outcome (Base1 or Base2 
depending on allocation) from elamipretide treatment 
outcome (End1 or End2 depending on allocation) to iso-
late the effect of elamipretide. Similar to the previous 
analysis, the outcomes were then split at the median to 
divide the 10 patients into responders and non-respond-
ers to elamipretide.

AHC models were then tailored to select PVs obtained 
from only elamipretide clinical visit data and map 
patients into two clusters. All AHC models have clus-
tered the patients into groups with respect to their 
elamipretide treatment group response identity with a 
perfect accuracy score (all 100%) (Fig.  3; Table  2). It is 
clearly evident from all cases in Figs. 1 and 2 there exists a 
pattern with a specific set of PVs having a high expression 
level of similarity and correlating with only one group 
of patient status relative to the remaining patient group, 
which may adequately distinguish non-responders from 
responders to elamipretide. A mean of 125 PVs (range 
109–143) were clustered with 10 patients to observe the 

clear distinguishable pattern between responder and 
non-responder groups observed in Fig. 3. The most com-
monly included PVs were those related to daytime max 
HR (19.5%), daytime min HR (12.9%), nighttime max 
HR (12.8%), daytime RR (11.4%), and nighttime min HR 
(8.9%) (Fig. 2 C-2D).

Discussion
The present study showed that continuously acquired 
physiological measurements such as HR, RR, and activ-
ity-related metrics acquired using wearable devices can 
be used to predict (i) functional status and (ii) response 
to treatment with elamipretide in patients with BTHS. In 
the first part of the study, AHC models clustered patients 
according to their functional status with accuracies of 
60–93% based on a mean of 218 PVs, with the great-
est accuracies for 6MWT (93%), PROMIS fatigue score 
(87%), and SWAY balance score (80%). In the second 
part of the study, another set of AHC models clustered 
patients with respect to their response to treatment with 
elamipretide with perfect accuracy (all 100%) based on a 
mean of 125 PVs. Collectively, these findings suggest that 
the application of machine learning-based techniques to 
data from wearable devices may open new frontiers in 
patient phenotyping, monitoring and stratification.

Fig. 2  Bar plots representing the numbers and percentages of PVs included each of the 10 agglomerative hierarchical clustering models. 
5XSST, 5 times sit-to-stand test; 6MWT, 6-minute walking test; AD, activity duration; AI, activity intensity; BTHS-SA, Barth Syndrome Symptom Assessment; 
HHD, handheld dynamometry; HR, heart rate; MLCL:CL, monolysocardiolipin to cardiolipin ratio; P, posture; PROMIS, Patient-Reported Outcomes Measure-
ment Information System; PV, physiological variable; RR, respiratory rate; WL, workload
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While randomized controlled trials can be used to 
establish efficacy and safety of a therapy at the popula-
tion level, at most they can generate data about the “aver-
age treatment effects” that would apply for an “average 
patient in the trial population” [20]. In reality, however, 
it is well agreed upon that a treatment’s effect varies 

across a population – a concept described as heteroge-
neity of treatment effects [21]. Individual patients may 
have many characteristics that potentially influence the 
benefit-harm ratio of a treatment and/or may affect the 
likelihood of an outcome. Only if these characteristics 
are being taken into account can optimal management of 

Table 2  Performance of agglomerative hierarchical clustering models: according to response to elamipretide. Performance 
metrics of three agglomerative hierarchical clustering models in clustering 10 participants with respect to their response to 
elamipretide for each of the outcomes. 5XSST, 5 times sit-to-stand test; 6MWT, 6-minute walking test; BTHS-SA, Barth Syndrome 
Symptom Assessment; HHD, handheld dynamometry; MLCL:CL, monolysocardiolipin to cardiolipin ratio; PROMIS, Patient-Reported 
Outcomes Measurement Information System; PV, physiological variable
Outcome measure True Negative False Positive False Negative True Positive Accuracy

(%)
Number 
of PVs

6MWT 5 0 0 5 100 143

PROMIS Fatigue score 5 0 0 5 100 109

SWAY Balance score 5 0 0 5 100 122

BTHS-SA Total Fatigue 5 0 0 5 100 115

Muscle Strength by 
HHD

5 0 0 5 100 129

5XSST 5 0 0 5 100 117

MLCL:CL 5 0 0 5 100 143

Fig. 3  Clustering patients according to response to elamipretide. Agglomerative hierarchical clustering with standardized Euclidean distance metric 
and complete linkage method. Clustermap of 10 participants interfaced with PVs based on their similarity mapped into responders and non-responders 
groups to drug elamipretide. Clustermap of PVs with outcomes (A) 6MWT, (B) PROMIS fatigue score, (C) SWAY balance score, (D) BTHS-SA, (E) Muscle 
strength by HHD, (F) 5XSST, (G) MLCL:CL. 5XSST, 5 times sit-to-stand test; 6MWT, 6-minute walking test; BTHS-SA, Barth Syndrome Symptom Assessment; 
HHD, handheld dynamometry; MLCL:CL, monolysocardiolipin to cardiolipin ratio; PROMIS, Patient-Reported Outcomes Measurement Information Sys-
tem; PV, physiological variable
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individual patients be achieved. Therefore, a major hurdle 
in the way of achieving true personalized medicine is to 
find ways of accurately classifying patients according to 
their expected treatment response.

With the widespread availability of wearable devices, 
a large amount of physiological data has become imme-
diately accessible [22, 23]. These data represent a largely 
untapped resource in medicine, which could be lever-
aged for the realization of personalized medicine. Our 
present study provides a novel paradigm for how this 
could be achieved through a combination of time series 
data acquired from wearables and the clustering abili-
ties of AHC models. Indeed, the time series data used in 
this study were gathered during normal daily activities, 
and when features derived from them were fed to AHC 
models, the latter were able to predict the (improvement 
in) performance of individual BTHS patients on 7 tests 
in a standardized test environment (i.e. 6MWT, PROMIS 
fatigue score, SWAY balance score). Our study thereby 
has incremental value beyond the elamipretide random-
ized controlled trial [11], demonstrating that those with 
the best response to elamipretide can be distinguished 
from those with the worst response to elamipretide based 
on continuous physiological measurements.

It is notable that certain PVs were more closely related 
to functional status and/or treatment response than oth-
ers. Interestingly, for each of the AHC models, PVs based 
on max and mean HR values were more commonly 
included than those based on mean HR (Fig. 2). Max and 
min HR are probably more informative of an individual’s 
“fitness” (and thus, performance on the standardized 
tests), as they reflect the ability to respond to exercise 
and other physiological stressors. While the relative con-
tributions of max and min HR differed between models, 
one striking observation could be made: max HR was 
the single most important contributor to the models for 
MLCL:CL. Accumulation of MLCL and loss of CL – and 
thus an increased MLCL:CL ratio – are directly related 
to lower tafazzin activity and more severe mitochon-
drial dysfunction. The close association with variations 
in maximal HR might therefore reflect restrictions in the 
ability to perform vigorous activities [15, 24]. While day-
time and nighttime measurements contributed equally 
in the AHC models for functional status, daytime mea-
surements were clearly predominant (about 60%) in the 
AHC models for treatment response. Since elamipretide 
is administered as a daily dose in the morning, this might 
have to do with plasma levels being lower overnight, leav-
ing the greatest observable effect of therapy during the 
day. Another possible explanation is that elamipretide 
only has an effect on activities above a certain thresh-
old, which is achieved only during the day. Finally, activ-
ity duration, activity intensity, posture, and workload 
were included in all models and were interpreted by the 

models in conjunction with the HR- and RR-based mea-
surements because the latter are dependent on activity.

The major strength of this study is its innovative appli-
cation of unsupervised machine learning (AHC models) 
to cluster patients according to their functional status or 
treatment response. The use of unsupervised machine 
learning to create a prediction model in a very rare dis-
ease is a novel approach as this is a substantial analytic 
challenge. Traditional machine learning approaches 
(including deep learning) usually require large datasets 
for algorithm training which tend to preclude their use 
in rare disease. Unsupervised machine learning, on the 
contrary, uses feature similarity between patients to clus-
ter patients and uncover underlying patterns based on 
those clusters. This allows for prediction of outcomes for 
new patients based on their feature similarity to existing 
examples.

The models demonstrated excellent accuracy for a total 
of 7 different outcomes, covering a spectrum of impor-
tant functional markers in patients with BTHS. Further-
more, an extensive set of features based was screened 
when constructing each of the AHC models, allowing 
for the most predictive ones to be selected. More specifi-
cally, the use of higher order features (derived using the 
“tsfresh” package) from time series data lends itself well 
for classification or clustering purposes, allowing to pack 
existing data variability within only a handful of features 
specific to different segments of the population. In addi-
tion, all time series data were obtained using the AVIVO™ 
mobile patient management system (Medtronic Inc.), 
which required no efforts from the patients except for 
wearing it for 7 consecutive days.

However, there are some limitations which need to 
be considered. First, because BTHS is an extremely rare 
disease, our study could only include 10 patients. Sec-
ond, our study should be regarded as an exploratory 
proof-of-concept study. Since accuracy was calculated 
based on the same data that were used for training, our 
estimates might be optimistic, and external validation of 
our findings is warranted before clinical use. Third, while 
dichotomous endpoints based on median split were used 
(“highest value” versus “lowest value”), we did not test 
whether the exact values for functional status and treat-
ment response could be predicted by the AHC models. 
Finally, we did not test whether data from the more com-
monly used smartwatches allowed for similarly accurate 
AHC models; this will require further investigation.

Conclusions
In conclusion, the present study demonstrated that 
continuous physiological measurements from wear-
able devices can be used to predict functional status and 
response to treatment among patients with BTHS. This 
proof-of-concept thereby introduces a novel paradigm in 
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machine learning that might allow for accurate classifica-
tion of patient phenotypes and prediction of treatment 
responses in various domains of medicine.
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