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Abstract
Background The peroxisome is a ubiquitous single membrane-enclosed organelle with an important metabolic role. 
Peroxisomal disorders represent a class of medical conditions caused by deficiencies in peroxisome function and are 
segmented into enzyme-and-transporter defects (defects in single peroxisomal proteins) and peroxisome biogenesis 
disorders (defects in the peroxin proteins, critical for normal peroxisome assembly and biogenesis). In this study, 
we employed multivariate supervised and non-supervised statistical methods and utilized mass spectrometry data 
of neurological patients, peroxisomal disorder patients (X-linked adrenoleukodystrophy and Zellweger syndrome), 
and healthy controls to analyze the role of common metabolites in peroxisomal disorders, to develop and refine a 
classification models of X-linked adrenoleukodystrophy and Zellweger syndrome, and to explore analytes with utility 
in rapid screening and diagnostics.

Results T-SNE, PCA, and (sparse) PLS-DA, operated on mass spectrometry data of patients and healthy controls were 
utilized in this study. The performance of exploratory PLS-DA models was assessed to determine a suitable number 
of latent components and variables to retain for sparse PLS-DA models. Reduced-features (sparse) PLS-DA models 
achieved excellent classification performance of X-linked adrenoleukodystrophy and Zellweger syndrome patients.
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Introduction
The peroxisome is a ubiquitous single membrane-
enclosed organelle which plays important metabolic 
functions, such as the β-oxidation of very long chain fatty 
acids, α-oxidation of branched chain fatty acids, synthesis 
of bile acids and ether-linked phospholipids, and removal 
of reactive oxygen species [1]. Peroxisomal disorders rep-
resent a class of medical conditions caused by defects in 
peroxisome functions and can be broadly segmented into 
enzymes and transporter defects (defects in single per-
oxisomal proteins important for peroxisome function) 
and peroxisome biogenesis disorders (defects in the per-
oxins - proteins which are critical for normal peroxisome 
assembly and biogenesis) [2, 3].

Zellweger syndrome (ZS) (OMIM: 214,100, ICD: 
Q87.82) is a rare congenital peroxisome biogenesis disor-
der, the most severe of the four disorders of the Zellweger 
spectrum, with an estimated prevalence of 1:50,000 [4]. It 
is characterized by a lack of functioning peroxisomes in 
the cells of the afflicted individual and is associated with 
deficient neuronal migration and neuronal positioning, 
and impairment in the individual’s brain development. 
The patient may present with high forehead, hypoplastic 
supraorbital ridges, epicanthal folds, midface hypopla-
sia, and other craniofacial abnormalities. ZS etiology is 
due to mutations of the PEX gene family, and the disease 
has rapid progression and high mortality rate. At pres-
ent, there are limited options for effective treatment, and 
treatment options are focused on improvement of quality 
of life and support.

X-linked adrenoleukodystrophy, X-ALD (OMIM: 
300,100, ICD: E71.33) is a rare disease with estimated 
prevalence of 1 in 15,000 individuals caused by muta-
tions in ABCD1 - an X chromosome gene (Xq28) which 
codes for the ALD protein. Functional deficiencies in 
this peroxisomal membrane transporter protein causes 
buildup of saturated very long-chain fatty acids (VLCFA) 
in plasma and tissues [5]. The clinical disease course of 
X-ALD in male patients commences with being asymp-
tomatic at birth. Addison’s disease is often the first dis-
play of the disorder that can present years before the 
appearance of neurological symptoms. The cerebral type 
of X-ALD can manifest in childhood (childhood cerebral 
ALD, CCALD), adolescence (adolescent cerebral ALD, 
AdolCALD) or adulthood (adult cerebral ALD, ACALD) 
and progress rapidly with deteriorating condition of 

the patient. Nearly all male patients and the majority of 
female patients who reach adulthood eventually develop 
adrenomyeloneuropathy (AMN) [6]. Depending on the 
specific X-ALD phenotype, patients may present with 
adrenocortical insufficiency, rapid decline in cognitive 
abilities, hyperactivity, spastic paraparesis and seizures, 
to name a few.

Despite their originally shown promise, Lorenzo’s oil 
and lovastatin have failed to deliver strong evidence as an 
effective therapy for AMN] [7–9]. Allogeneic bone mar-
row transplantation or hematopoietic stem cell trans-
plantation are the most effective treatment in cerebral 
ALD, which if administered at an early time point before 
neurological symptom appear, can arrest the progression 
of X-ALD and stop demyelination. The prognosis is poor 
for advanced stage cerebral X-ALD [10, 11] and alterna-
tively to allogeneic stem cell transplants, therapy involv-
ing infusion of autologous CD34 + cells transduced with 
the elivaldogene tavalentivec (Lenti-D) lentiviral vector 
[12–14] have been performed on X-ALD patients with 
effective outcome. Genetic therapy with in- vivo genetic 
transfer mediated by adeno-associated virus 9 (AAV9) 
has been developed and shown therapeutic promise 
[15]. Methods which focus on correction of the endog-
enous ABCD1 gene in vivo such as homology-indepen-
dent targeted integration (HITI) [16] or treatment with 
a direct intracerebral injection of lentiviral ABCD1 [17] 
may become a treatment paradigm for X-ALD patients 
in the future. At present however, the temporal window 
of opportunity for treatment administration is limited, 
which underscores the necessity of early diagnosis, rou-
tine newborn screening, and periodic MRI examinations 
in order to achieve a favorable prognosis in X-ALD [18].

When there is suspicion of peroxisomal disorder in 
the patient, the diagnosis is confirmed by biochemi-
cal tests, metabolomic profiling, and in recent years by 
targeted gene sequencing. Such clinical processes are 
time consuming and labor intensive and underscore the 
necessity of ongoing further development and improve-
ment of suitable biomarkers [19, 20] that can be utilized 
in newborn screening, rapid diagnostics, and to avoid 
missing the therapeutic window for effective treatment. 
Recent computation effort [21] applied machine learn-
ing to establish diagnostic thresholds of clinical biomark-
ers for differential diagnosis in peroxisomal disorders 
based on the patient’s VLCFA pattern profile. Overall, 
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while significant progress has been made, unanswered 
questions remain and integrating available metabolo-
mics datasets with multivariate analysis methods has the 
potential to enhance the study of peroxisomal disorders 
for improved screening and diagnostics modalities.

Previously, we explored the utility of tandem mass 
spectrometry in screening X-ALD and ZS and analyzed 
and established the reference intervals of a panel of 8 
very long-chain lysophosphatidylcholines and acylcar-
nitines and their ratios for screening of X-ALD patients 
[22]. Furthermore, we evaluated the concentration level 
differences of these metabolic features in healthy con-
trols, X-ALD, and ZS patients, and a preliminary meta-
bolic feature subset as a targeted metabolite panel [23] 
was proposed. The motivation of the present work was 
to investigate and assess the performance of multivariate 
modeling and analysis in classifying patient samples in 
peroxisomal disorder (ZS and X-ALD), non-peroxisomal 
disorder neurological patients and healthy controls, and 
to determine models with most improved screening util-
ity. We aimed to analyze the classification potential of 
very long chain acylcarnitines (VLCAC) and lysophos-
phatidylcholines (LPC) [24] metabolite data. Our addi-
tional goal was refining and augmenting the evidence 
supporting the VLCAC- and LPC-based features with the 
most classification potential, and to improve and simplify 
the accurate screening and diagnosis of peroxisomal dis-
orders (ZS and X-ALD) in pediatric patients and serve as 
a reference point in the implementation of future clinical 
diagnosis methods.

Materials and methods
Summary
In this study we employed multivariate supervised 
and non-supervised statistical methods (t-SNE, PCA, 
PLS-DA, and sparse PLS-DA) operated on mass spec-
trometry data of neurological patients, peroxisomal dis-
order (X-linked adrenoleukodystrophy and Zellweger 
syndrome) patients, and healthy controls to analyze the 
role of common metabolites, to develop and refine pre-
dictive models of X-linked adrenoleukodystrophy and 
Zellweger syndrome, and to assess analytes with screen-
ing utility.

Patient data
Patient data was collected by the Newborn Screening 
Center of Shanghai Children’s Hospital in the time period 
of January 2017 to March 2021 and retrieved from the 
hospital’s computer system. The dataset contained a total 
of n = 398 Chinese patients in 4 subsets - a neurological 
disease subset (DDE) (n = 181) consisting of patients with 
neurological abnormalities such as developmental delay 
which did not have a diagnosis of a peroxisomal disorder 
(non-PD neurological patients); a peroxisomal disorder 

patients subset (n = 18) consisting of children who had 
received a diagnosis of X-linked adrenoleukodystrophy 
(X-ALD, 14 cases, 13 families) and Zellweger syndrome 
(ZS, 4 cases, 3 families); and healthy controls (n = 199, 
control) which were selected from the population of 
patients who had visited for the purpose of routine 
newborn screening. The following stratifications of the 
patients were assembled for the subsequent multivariate 
analysis: (a) a 4-class, consisting of the ZS, X-ALD, DDE 
and Control classes (b) a 2-class, consisting of ZS and 
a set combining the X-ALD, DDE, and control patient 
classes (XDC), and (c) a 2-class, consisting of X-ALD 
and a set combining ZS, DDE and control patient classes 
(ZDC).

The patients were of male sex and the average age of 
the patients was 4.5 years, ranging from age of 1 day to 
11 years old. The 18 cases of peroxisomal disorders (14 
cases of X-ALD and 4 cases of ZS, all of who were males, 
with an age range of 2 days to 10 years were diagnosed 
by high-throughput sequencing technology. In all 14 
X-ALD patients hemizygous mutations in the ABCD1 
gene were detected, and the 4 cases diagnosed with ZS 
involved complex mutations in the two genes PEX1 and 
PEX10. Additional data regarding clinical manifestations 
and gene mutation results of the 18 peroxisomal disorder 
patients are presented in Supplementary Table S1.

Sample collection and mass spectrometry
Collected blood was spotted on S&S 903 (Schleicher & 
Schuell) filter paper (Merck, Sigma-Aldrich Corp. (St. 
Louis, MO, USA), dried for 2 h at room temperature 
and stored at − 20  °C. For each sample, we took a 3 mm 
diameter dry blood spot of filter paper and placed it in 
a 96-well microplate (from NeoBase non-derivatized 
MSMS kit (PerkinElmer Inc, Waltham, MA, USA)) and 
added 125 µl of the extraction solution (85% methanol, 
0.1% oxalic acid, water, and stable isotope internal stan-
dard containing 2H3-Hexacosanoylcarnitine (2H3-C26) 
and 2H4-Hexacosylcholine (2H4-C26:0 lysophosphatidyl-
choline, 2H4-C26:0-LPC)). The plate was incubated in 
a 45  °C airtight manner and oscillated at 600-800 r/min 
for 30 min. After elution, 100  µl extraction of each sam-
ple was transferred into the V-shaped bottom detection 
plate, and directly tested on the MSMS without chro-
matographic column. The mobile phase was 84% ace-
tonitrile, 16% water and 0.1% formic acid, and the flow 
rate of the quaternary pump was set at variable speed 
as follows: 0.24 mL/min from 0 to 0.15 min, 0.009 mL/
min from 0.16 to 1.14 min, 0.6 mL/min from 1.15 to 
1.49 min, and 0.12 mL/min from 1.50 to 2.00 min. Each 
sample took 2 min for analysis, and the injection volume 
was 20  µl. The MRM parameters were utilized for the 
relative quantitative determination of the target metab-
olites as following four VLCAC – eicosanoylcarnitine 
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(C20:0-carnitine), docosanoylcarnitine (C22:0-carni-
tine), tetracosanoylcarnitine (C24:0-carnitine), hexaco-
sanoylcarnitine (C26:0-carnitine) and the following four 
LPC- C20:0 lysophosphatidylcholine (C20:0-LPC), C22:0 
lysophosphatidylcholine (C22:0-LPC), C24:0 lysophos-
phatidylcholine (C24:0-LPC) and C26:0 lysophosphati-
dylcholine (C26:0-LPC). Mass spectrometry detection 
was performed on a Xevo TQD MS/MS system (Waters, 
Milford, MA, USA). Sample management was handled by 
an ACQUITY UPLC I-Class PLUS system (Waters, Mil-
ford, MA, USA) comprised of a binary solvent manager 
(BSM) and a sample manager with Flow-Through Needle 
(SM-FTN-I).

Statistical analysis and model development
Data processing and feature construction
The concentration levels of the 4 VLCAC features (C20:0-
carnitine, C22:0-carnitine, C24:0-carnitine, C26:0-car-
nitine) and the 4 LPC features (C20:0-LPC, C22:0-LPC, 
C24:0-LPC, C26:0-LPC) (Table S2), determined using 
MS/MS for the DDE group (n = 181), the X-ALD (n = 14) 
group, the ZS (n = 4) group, and the control group 
(n = 199), were utilized to compute the 4 VLCAC ratio 
features (C24:0-carnitine/C20:0-carnitine, C24:0-carni-
tine/C22:0-carnitine, C26:0-carnitine/C20:0-carnitine, 
C26:0-carnitine/C22:0-carnitine) and the 4 LPC ratio 
features (C24:0-LPC/C20:0-LPC, C24:0-LPC/C22:0-LPC, 
C26:0-LPC/C20:0-LPC, C26:0-LPC/C22:0-LPC) (Supple-
mentary Table S2). The four VLCAC and the four LPC 
metabolites and their 8 ratios were utilized as the 16 fea-
tures employed in the downstream analysis and model 
development. The targeted metabolite panel dataset was 
processed using the R analysis platform, each feature lev-
els were scaled and centered (mean-centering and divi-
sion by the standard deviation of each feature) [25]. The 
normalized data was utilized to perform the statistical 
analysis.

Unsupervised analysis (t-SNE and PCA)
Starting with the patient dataset consisting of 398 sam-
ples and 16 features, t-Distributed Stochastic Neighbor 
Embedding (t-SNE) analysis was performed utilizing the 
R-package Rtsne [26] Complexity was set to number 50 
and 1000 iterations were performed. Principal compo-
nent analysis (PCA) was performed using the R package 
mixOmics::pca [27].

Partial least-squares discrimination analysis (PLS-DA)
Partial least-squares discrimination analysis (PLS-DA) 
[28] and sparse PLS-DA (sPLS-DA) were performed 
using the R package mixOmics [27]. Three exploratory 
PLS-DA models were operated, one model per each 
stratification: the 4-class ZS/X-ALD/DDE/Control, the 
2-class X-ALD/ZDC, and the 2-class ZS/XDC utilizing 

all available features (n = 16) with a large number (n = 10) 
of latent components. A 5-fold stratified cross-validation 
was utilized to assess the number of latent components 
and classification error metric. VIP values were com-
puted for each feature across the latent components. 
Then the mixOmics::tune function was utilized to esti-
mate the classification error rate vis-à-vis the number of 
selected features in the PLS-DA models and to choose a 
reduced number of features for the final parsimonious 
models and to re-assess the optimal number of latent 
components.

Six final sparse PLS-DA models were fitted; two mod-
els per each stratification. The performance of each 
model was assessed by a 5-fold stratified cross-validation 
repeated 100 times utilizing the mixOmics::perf function, 
and balanced error rate computation and Area Under 
Curve(AUC) analysis were performed.

Balanced Error Rate (BER) was computed by first cal-
culating the classification error rate for each class and 
then the values were averaged to arrive to the balanced 
error rate. This approach weights all the classes equally 
regardless of how many samples are in each class. Thus, 
BER is suitable in situation where there is an unbalanced 
number of samples in each class - it calculates the average 
proportion samples that are incorrectly classified for each 
class, weighted by the available number of samples per 
class – this approach reduced the bias towards majority 
classes when performance assessment is performed. A 
value of BER = [0, 1] indicates a well-performing and sig-
nificantly accurate model.

Results and discussion
We analyzed targeted metabolite panel data for n = 398 
patients first in an unsupervised manner utilizing t-SNE 
and PCA, followed by supervised analysis utilizing PLS-
DA. Performance of exploratory PLS-DA models for 
each of the three data set stratifications was assessed to 
determine a suitable number of latent components and 
features to retain for sparse PLS-DA models. PLS-DA 
models with increasing parsimony were fitted in order to 
establish metabolic signatures of X-linked adrenoleuko-
dystrophy and Zellweger syndrome and assess metabo-
lites significant to model performance.

Unsupervised analysis: t-SNE and 4-class PCA analysis
The targeted metabolite panel dataset in the study was 
first summarized and explored by an unsupervised step. 
We calculated median values and concentration ranges, 
the 1st, 50th (median), and 99th percentiles for all 16 fea-
tures (Supplementary Table S3) followed by the applica-
tion of dimensionality reduction methods, which allow 
the data to be visualized in two-dimensions. T-distrib-
uted stochastic neighbor embedding (t-SNE) [29] visu-
alization of the 16 metabolite-based features revealed 
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distinct group-specific metabolomics signatures. The 
control group (n = 199, black dots), ZS group (n = 4, yel-
low dots), X-ALD group (n = 14, dark blue dots) and DDE 
group (n = 181, red dots) (Fig. 1, panel a) classes show a 
pattern of separation, with the X-ALD and ZS samples 
grouping distantly from the DDE and control samples 
with the notable exception of two samples which appear 
together near the DDE group.

Next, we performed PCA analysis utilizing the 4 groups 
(X-ALD, ZS, DDE and control), to examine the intrinsic 
variation in the patients’ metabolite levels. A PCA model 
with 3 principal components was fitted. On one hand, we 
used the method to reduce the dimension of metabolo-
mics data and simplify the data, to visually observe the 
distribution of samples in the mathematical model space. 
On the other hand, we used this method to capture the 
features with the greatest impact and identify the features 
that are causing the difference in the samples. The DDE 
and control group do not separate well on the first prin-
cipal component (PC), whereas the scores plot shows a 
separation of the ZS and X-ALD samples from the con-
trol and DDE groups on PC1 (Fig. 1, panels b, c). Over-
all, it is immediately apparent that a clustering structure 
emerges from the observations in the 398 samples.

The proportion of explained variance was determined 
as 0.37 for PC1, 0.22 for PC2, and 0.15 for PC3, and then 
cumulatively as 0.37, 0.59, and 0.74 respectively, thus the 
model explains ~75% of the variation in the lipid metabo-
lite data (Supplementary Fig. 1, Inset). From the scores 
plots it can be observed that the within class variation 

of the ZS and X-ALD groups is noticeably higher than 
the within class variation of DDE and control groups. 
Features C26:0-carnitine in particular, followed by 
C24:0-carnitine/C22:0-carnitine, C26:0-carnitine/C20:0-
carnitine for the first principal component and C26:0-
LPC/C20:0-LPC, C24:0-LPC/C20:0-LPC, C24-0-LPC/
C22:0-LPC for the second principal component, appear 
to have the highest influence on the PCA model as evi-
denced by the loading plots (Supplementary Fig. 1, pan-
els a, b).

Of the two patients that cluster away from the X-ALD 
and ZS groups, the first patient (ZS) has mutations 
in PEX10. Metabolite concentration measurements 
were 0.11 µmol/L (C26:0-carnitine) and 0.46 µmol/L 
C26:0-LPC). C20:0-carnitine and C22:0-carnitine con-
centrations for this patient ranked second, and the 
C24:0-carnitine concentration ranked third in the per-
oxisomal disorder group. The second patient (X-ALD) 
has mutations in ABCD1 and had the lowest concentra-
tion of 0.07 µmol/L (C26:0-carnitine) and 0.17 µmol /L 
(C26:0-LPC), and the highest concentrations of C20:0-
carnitine, C22:0-carnitine, and C24:0-carnitine amongst 
the patients from both the ZS and X-ALD groups. In the 
PCA scores (Fig. 1b, c), the two samples account for the 
maximum score in PC2 (-14.36 and –3.8) and PC3 (17.56 
and 6.75) in the ZS and X-ALD groups.

Overall, the unsupervised analysis results, both by 
t-SNE and PCA, emphasized the existence of intrin-
sic group-specific separation within the dataset and the 
utility to extend the analysis by performing supervised 

Fig. 1 Unsupervised multivariate analysis of patient targeted metabolite panel data. (a) t-SNE visualization of 16-features in patient samples for the ZS 
(yellow), X-ALD (dark blue), DDE (red), and control (black) groups; (b,c) PCA analysis of targeted metabolite panel data in healthy controls, non-PD neu-
rological patients (DDE), X-linked adrenoleukodystrophy (X-ALD), and Zellweger syndrome (ZS) patients. Score plots along the 3 principal components 
are shown.
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modeling with potential diagnostic application for 
X-linked adrenoleukodystrophy and Zellweger syndrome 
patients.

Supervised classification analysis: PLS-DA and sparse 
PLS-DA
Next we applied PLS-Discriminant Analysis (PLS-DA) 
which is a supervised method derived from PLS [30–32] 
and whose classification power has been widely applied 
to analyze metabolomics data [33, 34]. The method is 
readily applicable to modeling in multi-class setting thus 
allowing us to perform classification analysis where each 
one of the four classes is considered separately as well as 
to perform our analysis into the 2-class setting where ZS 
and X-ALD are the target classes.

PLS-DA – exploratory models
A total of three exploratory PLS-DA models including 10 
latent components and all 16 features were fitted on the 
three data partitions (4-class, 2-class X-ALD vs. ZDC, 
and 2-class ZS vs. XDC). The goal of this step was to eval-
uate the classification potential of the PLS-DA approach 
as well as to estimate an appropriate number of latent 
components and classification distance to be utilized in 
the subsequent modeling. The number of components 
to use is a crucial decision and is dictated by the perfor-
mance of the PLS-DA model – i.e., its ability to correctly 
classify novel samples. In this step, we performed 5-fold, 
stratified cross validation with 100 repetitions while 
evaluation the classification error of the model was done. 
The repeats were performed to reduce the impact of the 
randomly allocated folds during each repeat. The follow-
ing number of latent components emerges as appropriate 
as the error for each distance metric decreases by very 
incremental amounts after a subsequent latent compo-
nent is added and components beyond that are likely to 
provide negligible returns to the classification perfor-
mance: n = 4 for the 4-class modeling and n = 1 for the 
2-class modeling schemes (Fig. 2, panel a,c,e). Centroids 
distance and balanced error rate (BER) were employed as 
distance measure and error rate.

PLS-DA models with all features
Next, we analyzed the metabolic differences between 
the patient groups by using PLS-DA and fitting a model 
first in the 4-class setting (4LC-FULL) with 4 latent 
components, utilizing all available 16 features. Supple-
mentary Fig. 2 shows the score plot, VIP plot and ROC 
curve assessment of the classification performance of the 
4LC-FULL model. The X-ALD and ZS classes appears to 
separate from the control and DDE classes on the first 
component, whereas the control vs. DDE and X-ALD 
vs. ZS less so and require additional components to be 
added for further improvement. (Supplementary Fig. 2, 

panel a). BER was 0.2586180 and AUROC results were 
0.9972, 0.9949, 0.9772, 0.9890, for X-ALD vs. Others, 
ZS vs. Others, DDE vs. Others, and Control vs. Others. 
(Supplementary Fig. 2, panel b1-4, Supplementary 
Table S4). For the 2-class settings, two models with 1 
Latent Component and 16 features were fitted (X-ALD-
FULL and ZS-FULL). (Supplementary Fig. 3, panel a 
and c) BER was 0.1315799 and 0.1368718, AUROC was 
0.9963 and 0.9898, respectively Supplementary Table S4.

The Variable Importance in the Projection (VIP) anal-
yses the importance of the contribution of each feature 
in explaining the class label through the latent compo-
nents and summarizes the contribution a variable makes 
to the model. The VIP score of a variable is calculated 
as a weighted sum of the squared correlations between 
the PLS-DA components and the original variable. The 
weights correspond to the percentage variation explained 
by the PLS-DA component in the model. An accepted 
criterion [35] considers features with VIP score > 1 as 
important for the explanatory power of a model. VIP 
analysis of the all-features PLS-DA models was applied 
to screen the features that can best distinguish the target 
patient groups. Eight features in the 4LC-FULL model 
were calculated to have VIP > 1: C26:0-carnitine was 
calculated as the feature with highest VIP score (1.32), 
C26:0-LPC was ranked third (VIP score = 1.13) (Supple-
mentary Fig. 2, panel c). Eight features in the X-ALD-
FULL model were calculated to have VIP score > 1: 
C26:0-carnitine, was calculated as the feature with high-
est VIP score (VIP score = 1.56), C26:0-LPC was ranked 
sixth (VIP score = 1.18). (Supplementary Fig. 3, panel 
b). Four features in the ZS-FULL model were calculated 
to have VIP score > 1: C26:0-LPC/C22:0-LPC was calcu-
lated as the feature with highest VIP score (1.89), C26:0-
LPC and C26:0-carnitine were ranked 2nd and 4rd (VIP 
score = 1.64 and 1.29) (Supplementary Fig. 3, panel d). 
These sets represents the features with the highest impor-
tance for each modeling scenario and were included as an 
input set in parsimonious models and represents a poten-
tial molecular signature of X-linked adrenoleukodystro-
phy and Zellweger syndrome patients.

Sparse PLS-DA models and targeted metabolite panel 
signatures of peroxisomal disorders
Metabolomic and targeted metabolite panel signatures of 
X-linked adrenoleukodystrophy and Zellweger syndrome 
consisting of a reduced set of the metabolic features 
explored in this work would have the potential to serve as 
a targeted diagnostic set to facilitate and expedite diag-
nosis at patient presentation or pro-actively via newborn 
screening. Sparse PLS-DA [36, 37] is an extension of 
canonical PLS-DA which employs a lasso regularization 
as a variable reduction strategy. We employed this mod-
eling and variable reduction technique, together with 
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Fig. 2 Assessing exploratory PLS-DA model performance and evaluating latent component and features to retain for sparse PLS-DA modeling. (a, c, e) 
Assessing PLS-DA model performance in the 4-class setting (Control vs. DDE vs. X-ALD vs. ZS) and the 2-class setting (X-ALD vs. ZDC; ZS vs. XDC) and 
selection of distance metric and number of latent components. Repeated stratified cross-validation (100  ×  5–fold CV) is used to evaluate the PLS-DA 
classification performance (measured by balanced error rate) for each prediction distance (max.dist, centroids.dist, and mahalanobis.dist). The balanced 
error rate appears to decrease negligibly after four latent components in the 4-class setting, and the balanced error rate reaches minimal value in 2-class 
setting with 1 latent component. (b) Cross-validation and error evaluation of the PLS-DA model in 4-class setting with 4 latent components and all 16 
features. Optimal, error minimizing set of features per component are indicated with a diamond. Yellow diamond points to a 3-latent component model 
with 1, 15, and 1 retained feature(s) per latent components LC1, LC2, and LC3 respectively. (d) Cross-validation and error evaluation of the PLS-DA model in 
X-ALD vs. ZDC 2-class setting with 1 latent component and all 16 features. blue diamond points to a 1 latent component model with 8 retained features. 
(f) Cross-validation and error evaluation of the PLS-DA model in ZS vs. XDC 2-class setting with 1 latent component and all 16 features. Blue diamond 
points to a 1 latent component model with 15 retained features

 



Page 8 of 14Zhu et al. Orphanet Journal of Rare Diseases          (2023) 18:102 

a heuristic selection method, with the goal to arrive at 
such metabolic signatures. The sparse version of PLS-DA 
is useful to identify discriminative features or the most-
predictive features in order to classify the input samples.

Firstly, we evaluated the performance of the three all-
features models developed hitherto by performing 5-fold 
stratified cross validation repeated 1000 times. The BER 
was calculated per latent component, as features were 
added iteratively in the modeling process (Fig. 2, panel 
b, d, and f). The evaluation suggested that for the 4-class 
stratification a 3-latent components sparse PLS-DA 
model with the following number of features retained 
by each component would encode a viable candidate 
– first latent component (LC1) with 1 feature, second 
latent component (LC2) with 15 features, and third latent 
component (LC3) with 1 feature (Fig. 2, panel b, yel-
low diamond). For the 2-class stratifications, the results 
suggested a 1 latent component with 8 and 15 features 
retained per component, respectively (Fig. 2, panel d, f, 
blue diamond).

The following approaches were taken when developing 
the parsimonious models. For the 4-class stratification, a 
sparse PLS-DA model (3LC1-15-1) was fitted with three 
latent components, with 1, 15, and 1 features per latent 
component, respectively. For the 2-class data partitions, 
a sparse PLS-DA model was fitted with one latent com-
ponent and 8 (X-ALD vs. ZCD) or 15 (ZS vs. XCD) fea-
tures retained, respectively. Also, for each of the 3 data 
stratifications a PLS-DA model was fitted employing the 
features selected by the criteria of VIP > 1 from the all-
features models.

In summary, the best performing model measured by 
the classification error rate (balanced error rate, BER) 
and AUROC for the 4-class stratification was the sparse 
PLS-DA model, for the 2-class stratifications were the 
models utilizing VIP features. While a most parsimoni-
ous model of suitable classification performance would 
satisfy Occam’s razor criteria, selection of which model-
ing approach to take will be dependent on the particu-
lar investigative context and the aims of the practitioner. 
Further comparative details of each model performance 
are presented in Supplementary Table S4.

We now provide further details of the fitting and per-
formance of the models. First, a sparse PLS-DA model 
(3LC-1-15-1) was fitted in the 4-class setting with 3 latent 
components with 1 feature retained in LC1 and LC3, 
and 15 features for the latent component LC2. Scores 
plots (Fig. 3, panels a, b) illustrate that the X-ALD and 
ZS classes are well separated from the control and DDE 
groups on the first component while similarly the con-
trol and DDE group show some overlap. The BER was 
0.2433382 (Supplementary Table S4). AUROC was 
0.9961, 0.9943, 0.9937, 0.9771 for the classification per-
formance of X-ALD vs. Others, ZS vs. Others, Control 

vs. Others, and DDE vs. Others (Fig. 3, Panels b1-3, 
Supplementary Table S4). The feature(s) selected in the 
course of the sparse PLS-DA modeling process on LC1 
was C26:0-carnitine, thefeatures selected on LC2 and on 
LC3 are shown and listed on Fig. 3, Panel c, Supplemen-
tary Table S4. The stability of the feature set was further 
evaluated in a 5-fold – 100x cross validation where the 
frequency of features selected was recorded for each 
repetition. Feature C26:0-carnitine was the only feature 
selected on LC1 (stability = 1), on LC2 – the features 
selected had the same stability = 1. On LC3–C26:0-LPC/
C22:0-LPC was selected with the highest stability (Fig. 3, 
panel c, Supplementary Table S4).

For the X-ALD vs. ZCD stratification, a sparse PLS-DA 
model (X-ALD-LC8) was fitted with 1 latent component 
with 8 features. The BER was 0.005052083 (Supplemen-
tary Table S4). AUROC was 0.9967 for classification per-
formance X-ALD vs. Others (Fig. 4, panel a). The features 
selected with stability   =   1 in this model were C24-carni-
tine, C26-carnitine, C24-carnitine/C20-carnitine, C24-car-
nitine/C22-carnitine, C26-carnitine/C20-carnitine, 
C26-carnitine/C22-carnitine, and C26:0-LPC. C24:0-LPC 
was selected with stability slightly < 1 (Fig. 4, panel b).

For the ZS vs. XCD stratification, a sparse PLS-DA 
model (ZS-LC15) was fitted with 1 latent compo-
nent with 15 features. The BER was 0.1353934 and the 
AUROC was 0.9898 for classification performance ZS vs. 
Others (Fig. 4, panel c, Supplementary Table S4). 14 of 
the selected features had stability = 1 (Fig. 4, panel d).

These feature set represents a molecular signature that 
can be used for classification of X-linked adrenoleuko-
dystrophy and Zellweger syndrome patients and dis-
tinguish such patients from other neurological disease 
patients or healthy control individuals. Furthermore, 
C26:0-carnitine emerges consistently as feature of impor-
tance for model classification performance.

Three VIP models, one model per each data stratifica-
tion (4C-VIP, X-ALD-VIP, ZS-VIP), were fitted utiliz-
ing features set derived from the non-sparse PLS-DA 
model where VIP analysis yielded VIP score > 1. This set 
represented the features with the highest importance 
for the exploratory model and are considered here as a 
potential molecular signature of X-linked adrenoleuko-
dystrophy and Zellweger syndrome. Performance was 
again assessed by 5-fold stratified cross validation with 
100 repeats and measured by the balanced error rate and 
AUC. The 4C-VIP model was fitted with 3 latent com-
ponents and 8 features per component (Fig. 5, Supple-
mentary Table S4). Score plot is shown on Fig. 5, panels 
a, b. (Fig. 5 Panel b1-3) BER was 0.2626092, AUC was 
0.9976, 0.9829, 0.9856, 0.9717 for XALD vs. Others, ZS 
vs. Others, Control vs. Others, DDE vs. Others. The 
X-ALD-VIP model was fitted utilizing 1 latent compo-
nent and 8 feature (Supplementary Table S4, Fig. 6). For 
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this model BER = 0.004856771 and AUROC = 0.9967. The 
ZS-VIP model was fitted utilizing 1 latent component 
and 4 features (Table S4, Fig. 6 panel c, d). For this model 
BER = 0.132335 and AUROC = 0.993.

C26:0-carnitine and C26:0-LPC as screening analytes for 
X-linked adrenoleukodystrophy and Zellweger syndrome
The search for predictive biomarkers has made signifi-
cant progress yet it is still an ongoing effort as metabolic 
tests consisting of parsimonious set of biomarkers and 

Fig. 3 Sparse PLS-DA model 3LC-1-15-1 (4-class setting). (a1-2): Sample plots of the targeted metabolite panel data after a parsimonious PLS-DA model 
was operated on the data, depicting the patient samples with the confidence ellipses for the class labels. (b1-3) One-vs.-Others ROC curves assessing the 
classification performance of the PLS-DA model with 3 latent components and 1, 15, and 1 feature(s) per component (c). Feature stability per component 
evaluation in 5-fold – 100x cross validation
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measurement have the potential to simplify and shorten 
the burdensome diagnostic journey of peroxisomal dis-
orders patients. Evidence has been reported for VLCFA 
accumulation of ABCD1 knockout mice -both C26:0-
LPC and C26:0-carnitine levels were highly increased in 
the brain, spinal cord, and in bloodspots and extended 
analysis showed likewise elevated levels in X-ALD 
patient blood spots, thus establishing C26:0-carnitine 
as a new X-ALD biomarker in humans (and mice) [38]. 

Further work evaluated C26:0-LPC and C26:0-carnitine 
as screening markers for X-ALD [39] and Zellweger spec-
trum disorders [40], and elevated levels of C26:0-carni-
tine have been observed in clinical samples of Zellweger 
spectrum disorders patients [41]. In 2017, Huffnagel et 
al. [39], when comparing the utility of analyzing C26:0 
carnitine vis-à-vis C26:0-LPC in DBS showed that C26:0-
LPC is elevated in all and C26:0-carnitine was elevated 
in 83% of the examined X-ALD newborns. The authors 

Fig. 4 Sparse PLS-DA models in the 2-class settings. (a). ROC curve assessing the classification performance of the PLS-DA model with 1 latent compo-
nents and 8 features in the X-ALD vs. ZDC 2-class setting. (b). Feature stability evaluation in 5-fold – 100x cross validation in the X-ALD vs. ZDC 2-class 
setting. (c). ROC curve assessing the classification performance of the sparse PLS-DA model with 1 latent component and 15 features in the ZS vs. XDC 
2-class setting. (d). Feature stability per in 5-fold – 100x cross validation in the ZS vs. XDC 2-class setting
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concluded the superiority of C26:0-LPC compared to 
C26:0-carnitine for the task of screening of X-ALD in 
newborn children. In 2020, Jaspers and coworkers [42] 
compared the screening performance of C26:0-LPC and 
VLCFA analysis in plasma, concluding a superiority of 

C26:0-LPC and recommending the utilization of C26:0-
LPC analysis in in the diagnosis of peroxisomal disor-
ders. In 2021, Natarajan and coworkers [43] measured 
C24:0-carnitine and C26:0-carnitine in DBS in an X-ALD 
cohort of Indian patients and concluded their ability less 

Fig. 5 PLS-DA VIP model in the 4-class setting. (a1-2) Sample plots after the PLS-DA model with the VIP features was operated on the data, depicting the 
patient samples with the confidence ellipses for the class labels (b1-3) One-vs.-Others ROC curves assessing the classification performance of the PLS-DA 
model with 3 Latent Components and VIP features
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reliable in comparison with that of C24:0-LPC and C26:0-
LPC in screening X-ALD when a cut-off value is applied.

The values measured for C26:0-carnitine and C26:0-
LPC in the Chinese pediatric dataset utilized in this 
work do not allow either one of these analytes to be used 
to apply a cutoff in separating the four patient classes - 
non-PD neurological patients, X-linked adrenoleuko-
dystrophy, Zellweger syndrome, and healthy controls 
from each other or X-linked adrenoleukodystrophy from 
Zellweger syndrome patients. Furthermore, C26:0-LPC 
in this study population had minimal ability to separate 
X-ALD and ZS from the control group (Supplementary 
Fig. 4). The multivariate modeling and classification work 
performed in our study highlights C26:0-carnitine as a 
potentially clinically useful analyte, an important feature 
in multivariate setting, with further support of additional 
metabolic features. Our paper strengthens the evidence 
for C26:0-carnitine, such as the one presented by van 
de Beek et al. (2016) [38] and Tian et all (2020) [22], as a 
potential analyte with screening utility for X-linked adre-
noleukodystrophy and Zellweger syndrome and that a 
reduced features set and multivariate modeling technique 
such as sparse PLS-DA can achieve suitable performance 
in the classification of X-linked adrenoleukodystrophy 
and Zellweger syndrome patients and neurological dis-
order patients. The assertion that C26:0-carnitine in DBS 
is a preferable and more accurate analyte to be utilized 
as a primary biomarker for peroxisomal disorders may 
be premature, yet it certainly merits further investiga-
tion and clinical validation particularly in the context of 

advanced discriminative models in lieu of straight cut-
offs and in light of the fact that C26:0-carnitine can be 
introduced with ease as an additional analyte in existing 
high throughput acylcarnitine and amino acid testing. 
Furthermore, ethnicity is a contributing factor in the 
variation of newborn screening. The dataset examined 
in this work is sourced from the screening program of a 
primary Chinese hospital in Shanghai and consists solely 
of Chinese patients, thus the results obtained may sup-
port the notion of a demographic effect (Asian vs. Cau-
casian patients) while showing that C26:0-carnitine can 
be a useful analyte for newborn screening of patients of 
Chinese ethnicity, which merits further investigations 
and consideration.

Conclusions
We have uncovered metabolic profiles of peroxisome 
disorders using MS/MS and multivariate statistical anal-
ysis, reporting relevant biological information to distin-
guish between healthy controls, non-PD neurological 
patients, X-linked adrenoleukodystrophy, and Zellweger 
syndrome patients. The VLCAC and LPC metabolic pro-
files showed a highly significant altered metabolic state in 
X-linked adrenoleukodystrophy and Zellweger syndrome 
patients. PLS-DA classification models with reduced fea-
ture set were developed achieving excellent classification 
power and AUROC. Our study demonstrated metabolic 
differences between healthy controls, non-PD neuro-
logical patients and X-linked adrenoleukodystrophy and 
Zellweger syndrome patients, and showed the potential 

Fig. 6 PLS-DA VIP model in 2-class settings. (a) ROC curve assessing the classification performance of the PLS-DA model with 1 Latent Components and 
VIP features in the X-ALD vs. ZDC 2-class setting (b) ROC curve assessing the classification performance of the PLS-DA model with 1 Latent Components 
and VIP features in the ZS vs. XDC 2-class setting
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utility of C26:0-carnitine as a relevant screening analyte 
for Chinese patients in the context of a discriminative 
model predictive of disease state.
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