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Abstract 

Background and objective  The diagnosis of rare diseases (RDs) is often challenging due to their rarity, variability 
and the high number of individual RDs, resulting in a delay in diagnosis with adverse effects for patients and health-
care systems. The development of computer assisted diagnostic decision support systems could help to improve 
these problems by supporting differential diagnosis and by prompting physicians to initiate the right diagnostic tests. 
Towards this end, we developed, trained and tested a machine learning model implemented as part of the software 
called Pain2D to classify four rare diseases (EDS, GBS, FSHD and PROMM), as well as a control group of unspecific 
chronic pain, from pen-and-paper pain drawings filled in by patients.

Methods  Pain drawings (PDs) were collected from patients suffering from one of the four RDs, or from unspecific 
chronic pain. The latter PDs were used as an outgroup in order to test how Pain2D handles more common pain 
causes. A total of 262 (59 EDS, 29 GBS, 35 FSHD, 89 PROMM, 50 unspecific chronic pain) PDs were collected and used 
to generate disease specific pain profiles. PDs were then classified by Pain2D in a leave-one-out-cross-validation 
approach.

Results  Pain2D was able to classify the four rare diseases with an accuracy of 61–77% with its binary classifier. EDS, 
GBS and FSHD were classified correctly by the Pain2D k-disease classifier with sensitivities between 63 and 86% and 
specificities between 81 and 89%. For PROMM, the k-disease classifier achieved a sensitivity of 51% and specificity of 
90%.

Conclusions  Pain2D is a scalable, open-source tool that could potentially be trained for all diseases presenting with 
pain.
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Introduction and background
Rare diseases pose particular challenges for health care 
systems as a result of their infrequency, diversity and 
often complex symptomatology. Especially the diagno-
sis of rare diseases (RDs) is often difficult, with adverse 
consequences for affected individuals and health care 
systems. A disease is categorized as rare in the European 
Union if it affects less than 1 in 2000 people [1]. Similar 
definitions exist in other regions of the world (for exam-
ple, the NIH defines a disease as rare if it affects less than 
200,000 people in the US [2]). As there are more than 
7000 known individual rare diseases, resulting in an 
estimated 30 Mio affected in the EU and about 400 Mio 
people worldwide, it is apparent that the sheer number 
of possibilities makes it impossible for individual phy-
sicians to know all of them. In addition, many rare dis-
eases present with multifaceted clinical symptoms. As a 
result, affected individuals often wait for a long time until 
they receive the correct diagnosis (~ 7  years on average 
[3]). Long time to diagnosis contributes to mental, physi-
cal and social distress. In addition, due to many medical 
consultations and resulting redundant diagnostic pro-
cedures, the burden for health care systems is further 
increased [3].

One possible strategy to improve time to diagno-
sis for rare diseases is the development of computer 
assisted diagnostic aids. In recent years, a number of 
studies and reviews focused on such technical solu-
tions to improve diagnosis of rare diseases ([4–6] and 
references therein). Clinical decision support systems 
(CDSSs), while used frequently in clinical settings, are 
not yet widespread in the context of diagnosis (also 
referred to as diagnosis decision support systems, 
DDSSs). Negative physician biases, insufficient accu-
racy and lacking integration with clinical information 
systems in use are discussed as underlying the lack of 
acceptance of DDSSs, in spite of promising results with 
regard to their effectiveness [7, 8]. This is to the disad-
vantage of people with rare diseases (RDs), who could 
benefit from diagnostic aid tools, as diagnosis of RDs is 
hampered by lack of knowledge and unspecific symp-
tomatology of many RDs [3]. Typically, the “diagnostic 
odyssey” of patients with undiagnosed rare diseases 
starts with consultation of family doctors or in other 
out-patient primary care facilities. In many countries, 
including Germany, this setting is not ideal for the 
development of DDSSs, as accessibility and interoper-
ability of healthcare data and information systems is 

mostly restricted to academic institutions, like univer-
sity hospitals or big clinics. We and others have there-
fore concentrated on information that is independent 
of these systems, like, e.g., patient reported experience 
measures (PREMs).

For example, questionnaires covering the patient’s 
history have been successfully used in the past to 
develop machine learning driven DDSSs. These were 
developed by analyzing patient interviews and extract-
ing typical experiences before diagnosis to formulate 
questions. The resulting questionnaires were collected 
from diagnosed patients, and used successfully to train 
classifiers, like random forest, support vector machine 
and neural networks, as well as a combination of those 
[9–11].

In a different approach, the internationally developed 
diagnostic aid tool Face2Gene uses portrait photo-
graphs and deep learning-based face recognition algo-
rithms for the diagnosis of rare genetic syndromes in 
children. The underlying facial image analysis frame-
work, DeepGestalt, was trained and curated in an 
impressive community driven effort [12–14]. It relies 
on the fact that genetic disorders often present with 
typical facial features that can be recognized by Face-
2Gene/DeepGestalt. It has been trained with an 
impressive ~ 17,000 syndromal portrait images to rec-
ognize more than 200 genetic disorders.

Many patients with rare diseases suffer from chronic 
pain, and it is often the first symptom that leads to 
medical consultation [15], making pain assessment a 
promising route towards diagnosis of rare diseases. 
Pain drawings (PDs) can be understood as an alterna-
tive form of PREMs like classical questionnaires, as 
they are used to communicate the experience of pain 
from patients to health care providers. Patients mark 
painful body regions in a simple line drawing of the 
human body to indicate where they experience pain. 
This often results in a more precise description of 
affected body parts than just via verbal description. PDs 
were first established by Palmer in 1949 [16]. While 
there are a growing number of studies dealing with the 
topic of PDs [17–22], none of them focuses on their 
usefulness as a diagnostic tool for rare diseases. We 
therefore decided to develop a DDSS based on PDs.

PDs—as image information—are not well suited 
for standard classifiers, which typically use numeri-
cal values, leading to extreme overfitting if every pixel 
is considered a feature, as the number of features then 
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far exceeds the number of samples. On the other hand, 
while deep learning with, e.g., convoluted neural net-
works (CNNs) works well on images, they need large 
training data sets. These are difficult to obtain for rare 
diseases, which poses problems for most studies with 
rare diseases, including clinical trials [23]. Therefore, 
we searched for alternative approaches and decided to 
utilize Ružička similarity, which is a suitable measure to 
calculate similarity between images.

With this study we investigate whether a k-disease clas-
sifier based on Ružička similarity is suitable as a DDSS 
for the detection of rare diseases causing chronic pain in 
patients. We have previously shown that a binary clas-
sifier (part of Pain2D-Tool of the PD analyzing software 
Pain2D) is able to distinguish between two rare diseases, 
Ehlers-Danlos syndrome (EDS) and Guillain–Barré 
syndrome (GBS) [24]. Here, we test the performance 
of the binary classifier, as well as a new k-disease classi-
fier implemented into Pain2D, on four different diseases 
(EDS, GBS, facioscapulohumeral muscular dystrophy 
(FSHD) and proximal myotonic myopathy (PROMM)) 
and a control group of patients with non-specific chronic 
pain.

EDS is a group of inherited disorders affecting the con-
nective tissue with a prevalence between 1:150,000 and 
1:5000, depending on the population [25]. EDS can pre-
sent clinically with variable symptomatology, from mild 
skin hyperextensibility, joint hypermobility, and tissue 
fragility, to severe physical disability and life-threatening 
vascular complications [26].

GBS is caused by autoantibodies attacking peripheral 
nerve components triggered by an infection, resulting 
in a polyradiculoneuropathy with variable clinical pres-
entation [27]. 1.1 to 1.8 per 100,000 persons suffer from 
GBS each year [28]. Symptoms can include a range from 
ascending bilateral limb weakness to decreased reflexes 
and severe back or extremity pain [29, 30].

FSHD is an autosomal-dominantly inherited muscular 
dystrophy which characteristically affects facial muscles, 
shoulder girdles, and upper arms [31]. The prevalence 
of FSHD is estimated to range between 2.03 and 6.8 per 
100,000 individuals [32]. Pain in the affected regions is a 
common symptom of patients suffering from FSHD [33]. 
The diagnosis of FSHD can be challenging, especially in 
milder forms, as typical symptoms of FSHD may not be 
present [34].

PROMM is a subtype of myotonic dystrophies also 
referred to as myotonic dystrophy type 2 (DM2). Myotonic 
dystrophies are autosomal-dominantly inherited diseases 
that have in common muscular involvement (myotonia, 
muscle weakness, muscular dystrophy), eye manifestations 
(early onset cataracts), cardiac conduction defects, and 
endocrine disorders [35]. Only a few studies deal with the 

prevalence of PROMM, with estimates for Europe ranging 
between 9:100,000 [36, 37] and 1:1830 in Finland [38]. As 
the name implies, PROMM in contrast to DM1 typically 
affects proximal muscles [39]. 50–80% of PROMM patients 
suffer from pain, which can be exercise-related, musculo-
skeletal, or abdominal [40]. While myotonic dystrophies 
are the most common forms of adult-onset dystrophies, 
PROMM is likely underdiagnosed due to its heterogeneous 
phenotype and unclear age of onset [39].

The four diseases and the control group were chosen to 
cover a range from very different causes of pain (e.g., GBS 
as an inflammatory disease vs. FSHD as an inherited neu-
romuscular disease) to more similar causes (e.g., FSHD 
and PROMM as two autosomal-dominantly inherited 
neuromuscular diseases) to test the ability of the Pain2D 
classifiers to distinguish between more or less similar rare 
diseases. The control group was added to elucidate if more 
common and unspecific causes of pain can be separated 
from rare diseases with Pain2D-Tool.

Taken together, our study explores the feasibility of 
Pain2D for pain-based diagnosis of rare diseases and pro-
vides the following contributions:

•	 Pain2D-generated pain profiles visualize the typical 
distribution of pain in EDS, GBS, FSHD and PROMM. 
Pain profiles are based on merging all available pain 
drawings and provide a color-coded, intuitive overview 
over the percentages of patients suffering from pain in 
a given area of the body per disease. Our study thereby 
provides additional insights about the characteristic 
pain localizations of the four diseases investigated and 
the potential to provide such information for other dis-
eases in the future.

•	 By investigating whether Pain2D could be used as 
a DDSS, we address the problem of the diagnostic 
odyssey of patients suffering from rare diseases. As a 
proof-of-principle study, our results confirm that with 
the introduction of a k-disease classifier, Pain2D can 
separate more than two rare diseases (as investigated 
by Wester et al. [24]) and therefore has the potential to 
become a useful DDSS for rare disease diagnosis.

•	 By adding a control group of non-rare causes of pain, 
this is, to our knowledge, the first time a study investi-
gates whether pain drawings can be used to distinguish 
rare diseases from common causes of chronic pain.

Material and methods
Study design and data collection
Between 2017 and 2019, a total of 35 patients with FSHD 
(10 male, 25 female) and 90 patients with PROMM par-
ticipated in this study. Of the latter, one PD was empty 
and had to be excluded from further analysis, resulting in 
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the inclusion of 89 PROMM PDs (29 male, 60 female par-
ticipants). Patients were recruited at the neuromuscular 
out-patient clinic of University Hospital Bonn, Germany. 
In addition, we contacted the German association for 
neuromuscular diseases to support us in finding patients 
willing to participate in our study. Inclusion criteria were 
a confirmed diagnosis, age above 18  years, and written 
informed consent.

Between 2019 and 2020, a total of 50 participants 
with unspecific chronic pain (19 male, 31 female) were 
recruited for this study (the limiting factor was the num-
ber of included participants with rare diseases due to 
small numbers of patients, so that we adjusted the size of 
the chronic pain group accordingly.) Inclusion criteria for 
this group were chronic pain due to a common disease 
(e.g., post-zoster neuralgia) above 6 months duration and 
age above 18 years. Exclusion criteria for this group were 
rare comorbidities. These patients were recruited at the 
out-patient pain clinic of University Hospital Bonn and at 
general medicine practices in Bonn, Germany.

In this study, 35 PDs of facioscapulohumeral mus-
cular dystrophy (FSHD), 89 PDs of proximal myotonic 
dystrophy (PROMM), and 50 PDs from a control group 
with common causes of chronic pain (CP) were included. 
Based on genetic findings, two subtypes of FSHD (FSHD1 
and FSHD2) can be differentiated, but both have a similar 
clinical phenotype [31]. We therefore did not distinguish 
between the two subtypes in our study population. In 
addition, we used 88 PDs from two different rare diseases 
that were recruited as part of a previous study: 59 from 
Ehlers-Danlos syndrome (EDS) and 29 from Guillain 
Barré syndrome (GBS) [24].

Recruited participants filled in pain drawings as previ-
ously described [24].

In accordance with German privacy laws and the decla-
ration of Helsinki, PDs were pseudonymized before send-
ing them from the Center for Rare Diseases Bonn (ZSEB) 
to the analysis server.

This study was registered at the German register for 
clinical studies DRKS (DRKS-ID: DRKS00014776 (par-
ticipants recruited for this study) and DRKS00014777 
(previously recruited participants, [24]).

Pain2D: software package for pain drawing analysis
Pain2D is a software package previously developed by 
our group [24] for the automated processing and analy-
sis of pain drawings based on a template, which can be 
printed and filled out on paper. As part of the package, 
an application for tablets (Pain2D-Tablet, paperless) is 
available, which was however not used for this study. 
The application Pain2D is open-source and holds a GPL 
v3.0 license for researchers who want to participate in its 
future development or test their own pain drawings with 

the classifiers we have implemented. The application was 
developed with the open-source statistics and graphics 
software R and RShiny. For more detailed information 
about Pain2D, please visit www.​pain2d.​com.

Pain2D generates pain profiles (PPs, also known as 
pain frequency maps [19]) by overlapping all PDs which 
belong to one diagnostic group and computing for each 
pixel the relative frequency of the PDs in which the pixel 
was marked. They are depicted as color coded heatmaps, 
with lower to higher percentages of marked pixels in the 
summarized PDs labeled in blue to red, with yellow indi-
cating 50% of PDs had marked that pixel. Pixels that were 
empty in all PDs are depicted in white.

Pain2D offers a binary and a k-disease classifier. The 
function of the binary classifier has been previously 
described [24]. Both classifiers first compute a pain pro-
file for each diagnostic group based on the available pain 
drawings for the corresponding diagnostic group by 
overlapping all PDs. The classifier assigns a given pain 
drawing to the disease to which it has the highest Ružička 
similarity. The Ružička similarity between a pain profile 
and a pain drawing is defined as 

m
i=1 min(xi ,yi)
m
i=1 max(xi ,yi)

 where m is 
the number of pixels, xi the intensity of pixel i in the pain 
profile and yi is 1 if the pixel i was marked in the corre-
sponding pain drawing and 0 otherwise.

Considerations for classification and comparison 
with other classification methods
Classification based on diagnoses requires a supervised 
learning method because the target variable (the class) 
corresponds to the diagnosis (in this case EDS, GBS, 
FSHD, PROMM and unspecific chronic pain). Stand-
ard machine learning or statistical methods like logistic 
regression, linear discriminant analysis, decision trees, 
random forests or support vector machines were not 
considered here as the PDs do not offer a set of features 
required as input for such classifiers. While it is theoreti-
cally possible to consider each pixel as one feature, this 
would result in too many features compared to the avail-
able sample sizes, which are limited due to the rarity of 
the diseases (in numbers, the result would be 477,400 or 
134,270 features, with the latter number resulting from 
the pixels inside the human body outlines only). The 
above-mentioned classification methods would there-
fore require feature selection, which however is also not 
feasible with such a large number of features and a lim-
ited sample size, as too many random correlations would 
make it impossible to identify the relevant features. A 
similar problem exists when considering convolutional 
neural networks (CNNs), which are often applied for 
image classification: CNNs also require a much larger 
number of samples per class in the training set than the 
samples that are available in our data set.

http://www.pain2d.com
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Classification based on Ružička similarity as a suitable 
measure to compare images was therefore chosen to cir-
cumvent these problems. We tested classification based 
on Ružička similarity with a simple nearest neighbor 
classifier and with a classifier based on the similarity to 
the pain profile (see above). The latter method was cho-
sen as it resulted in much better accuracy.

To explore other methods of classification for compari-
son, we also tested approaches based on kernel nearest 
neighbor classifiers with different kernels: The standard 
Gaussian kernel gave the best results but could not reach 
the performance of the classifier based on pain profiles. 
Sensitivity for the four disease classes ranged from 0.03 
to 0.85 for the Gaussian kernel and—as another exam-
ple—0.20–0.56 for the inverse kernel. We have also used 
other kernels, which proofed to perform poorly.

Statistical evaluation
Because of the limited size of the data set, evaluation was 
carried out by leave-one-out cross-validation (LOOCV). 
For the classification results, receiver operating char-
acteristic (ROC) curves were plotted and AUC values 
calculated using the pROC package from R. For ROC 
analysis, resulting Ružička similarities to the diagnostic 
groups were normalized, so that the sum of the normal-
ized Ružička similarities to the diagnostic groups is 1. 
Confidence intervals were calculated as indicated. The 
leave-one-out-cross-validated confusion matrices were 
tested with Fisher’s exact test (binary classification) or χ2 
test (k-disease classification) for better than random clas-
sification, as indicated.

Results
Pain profiles of the five diagnostic groups (EDS, GBS, 
PROMM, FSHD, CP)
Pain2D generates pain profiles, which provide a visual 
result of the sum of all PDs of one diagnostic group and 
serve as the basis for similarity measurement of an indi-
vidual PD for classification by Pain2D.

EDS
The pain profile of EDS reveals that most patients expe-
rience pain along the vertebral column with the neck 
and the tailbone, and the knee joints. These regions 
were marked by approximately 70% of the participat-
ing patients. In addition, nearly 50% of the participants 
marked the shoulder region, the elbows and the thumb 
saddle joint (Fig. 1A; compare [24]).

GBS
The most prominent regions marked by patients were 
the dorsal and plantar side of the feet (~ 70% of patients). 
In addition, about 50% marked the palmar side of the 

fingertips, the dorsal side of the left palm and the tail-
bone (Fig. 1B; compare [24]).

FSHD
As shown in Fig.  1C, the most frequent body regions 
marked by patients with FSHD are the shoulders and the 
lower back with percentages of 50–60%. In addition, the 
upper arms were marked by ca. 40% (Fig. 1C).

PROMM
The pain profile of PROMM shows that around 50–60% 
of patients marked the upper legs as a painful region. 
Other less frequent regions marked were the shoulders, 
the lower legs and the lower back (Fig. 1D).

Chronic pain (CP)
The disease pattern of our control group (Fig. 1E) shows 
that pain patterns are more equally distributed between 
patients, with percentages marked well below 50%. The 
localization with the highest percentage is the lower back 
with ca. 40%. This result is consistent with the expecta-
tion of a more unspecific pain pattern as this group was 
suffering from various common causes of chronic pain.

RARE
We also generated a pain profile of all four rare diseases 
(EDS, GBS, PROMM and FSHD) in order to test if PDs 
from a group of rare diseases show similarities that allow 
distinction from other causes of pain. Accordingly, the 
resulting pain profile shows the typical pain areas from 
all four rare diseases, but at lower percentages (as a sum 
projection of the four RD pain profiles; Fig.  1F). This 
“consensus” pain profile is however not equally informed 
by the four rare diseases, as different numbers of individ-
ual PDs for each disease were included. For example, the 
data set contains 89 PDs of PROMM, but only 29 of GBS.

The binary classifier of  Pain2D can differentiate 
between a group of rare diseases (comprised of EDS, GBS, 
FSHD and  PROMM) and  unspecific chronic pain (CP) 
with high sensitivity but lower specificity  We were inter-
ested if PDs can be used to predict the presence of a rare 
disease as opposed to a common cause for chronic pain. 
As a test, we grouped all four rare diseases into the group 
RARE and classified all PDs (EDS, GBS, FSHD, PROMM, 
CP) with the binary classifier of Pain2D into RARE or CP. 
With the standard threshold of 0.5 for the binary classifier 
we reached a very good sensitivity of 94% and a notably 
lower specificity of 42%. Fisher’s exact test was applied 
to the confusion matrix (Table  1) and resulted in a p 
value < 0.001, indicating that the binary classifier performs 
better than random guessing and can indeed distinguish 
between rare diseases and common causes for chronic 
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Fig. 1  Pain profiles of the five diagnostic groups used in this study, EDS (A), GBS (B), FSHD (C), PROMM (D), chronic pain (CP, E) and RARE (F). The 
depicted pain profiles were constructed by Pain2D from 29 EDS (A), 59 GBS (B), 35 FSHD (C), 89 PROMM (D) and 50 CP (E) PDs. RARE is based on 29 
EDS, 59 GBS, 35 FSHD and 89 PROMM PDs (F)
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pain in the test setting. A receiver operating characteristic 
(ROC) curve was plotted and the R package pROC [41] 
was used to calculate the best threshold for classification 
of the given data set (Fig. 2, blue crosshair). This resulted 
in an optimal threshold for classification of 0.41, which 
led to a slightly lower sensitivity of 82%, but considerably 

increased specificity of 70%. The calculated 95% confi-
dence band (light blue area) for sensitivity shows low vari-
ance for all thresholds. The area under the curve (AUC) 
of 0.82 indicates good separability between the four rare 
diseases and chronic pain.

The binary classifier of  Pain2D can separate each 
of the four rare diseases from chronic pain with high sensi‑
tivity but low values for specificity  In addition to a gen-
eral prediction of the presence of a rare disease vs. a com-
mon cause of chronic pain (Table  1, Fig.  2), we wanted 
also to test if the binary classifier of Pain2D is able to 
separate PDs of each of the four tested rare diseases (EDS, 
GBS, FSHD, PROMM) from PDs of more common causes 
of chronic pain (CP).

In these four cases, Pain2D classified PDs with an accu-
racy of ≥ 61% (Table 2). The most accurate classifier was 
for GBS versus CP (77%) and the most inaccurate one for 
FSHD versus CP (61%). Overall, the sensitivity achieved 
by the binary classifier of Pain2D for these four cases 
was ≥ 90%, with the best result for EDS versus CP at 98%. 
The values for specificity were relatively low at ≥ 30% 
(best result for GBS vs. CP at 66%).

AUCs of ROC curves were ≥ 0.845, with best results for 
GBS versus CP at 0.921 (Table 2, Fig. 3). Taken together, 
these results suggest that the binary classifier can distin-
guish between the control group and each of the four rare 
diseases investigated with good sensitivity, but consider-
ably lower specificity.

Table 1  Confusion matrix RARE versus CP

Percentages are relative to Sumtrue

Predicted

RARE CP Sumtrue

True  RARE 200 (94%) 12 (6%) 212 (100%)

 CP 29 (58%) 21 (42%) 50 (100%)

 Sumpredicted 228 (87%) 33 (13%) 261 (100%)

Fig. 2  ROC curve for classification of PDs into RARE and CG with 
the binary classifier of Pain2D. The light blue area indicates the 95% 
confidence interval. Blue crosshairs indicate optimal classification 
threshold of 0.41

Table 2  Classification results with the binary classifier of Pain2D for each rare disease versus CP, listing values for true positives (TP), 
false positives (FP), true negatives (TN), false negatives (FN), p value (Fisher’s exact test), accuracy (Acc), sensitivity (Sens), specificity 
(Spec), AUC of the ROC curve (AUC​ROC)

In all cases, the p values (Fisher’s exact test) suggest strongly that the classifier performs much better than random guessing

TP FP FN TN p value Acc Sens Spec AUC​ROC

EDS versus CP 58 35 1 15 < 0.001 0.67 0.98 0.30 0.899 (CI 0.892–0.954)

GBS versus CP 28 17 1 33 < 0.001 0.77 0.96 0.66 0.921 (CI 0.853–0.973)

FSHD versus CP 34 32 1 18 < 0.001 0.61 0.97 0.36 0.854 (CI 0.77–0.93)

PROMM versus CP 80 24 9 26 < 0.001 0.76 0.90 0.52 0.846 (CI 0.774–0.908)
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The k‑disease classifier of  Pain2D can classify PDs 
as PROMM, EDS, FSHD, GBS and chronic pain with vary‑
ing sensitivity and overall high specificity  The classifica-
tion of all PDs with the k-disease classifier of Pain2D gave 
results with varying sensitivities for the five groups, rang-

ing from 0.51 to 0.83 for the four diseases analyzed. The 
control group of unspecific chronic pain (CP) was clas-
sified with a low sensitivity of only 0.14. Specificity was 
overall high with values between 0.83 and 0.99 for the five 
diagnostic groups. In all cases, low p values of < 0.001 (χ2-

Fig. 3  Receiver operating characteristics (ROC) curves for binary classification of each RD versus CP. A ROC curve binary classification of EDS and 
CP. AUC = 0.899 (CI 0.829–0.954), B ROC curve binary classification of GBS and CP. AUC = 0.921 (CI 0.853–0.973), C ROC curve binary classification of 
FSHD or CP. AUC = 0.854 (CI 0.770–0.930), D ROC curve binary classification of PROMM and CP. AUC = 0.846 (CI 0.774–0.908). Confidence intervals 
are depicted as light blue band. Blue crosshairs indicate optimal threshold for classification
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Test) indicated that the k-diseases classifier performed 
better than random assignment of the diseases.

Pain2D k‑disease classification works well for EDS, GBS 
and FSHD
The classification for GBS, EDS and FSHD gave good 
results with sensitivities of 86%, 64% and 63%, respec-
tively. Of note, EDS and GBS were previously efficiently 
classified with the binary classifier of Pain2D as well 
(sensitivity 86%, specificity 96%; [24]). As a possible 
explanation, the pain profiles of EDS and GBS each 
show painful regions that are not present in the other 
pain profiles, like the knees in EDS and the feet in GBS. 
These regions are only rarely marked in the other dis-
ease patterns, which could contribute to efficient clas-
sification. FSHD typically affects the shoulder and the 
lower back. These regions are also sometimes marked 
in PDs of other diseases, as well as in the unspecific 
chronic pain group. Nevertheless, the k-disease classi-
fier of Pain2D was still able to classify FSHD with a sen-
sitivity of 63% and specificity of 83%.

Pain2D k‑disease classification of PROMM PDs 
is less efficient
PROMM PDs were classified correctly only in 52%; the 
most common misclassifications were as GBS (23%) and 
FSHD (19%). Less efficient classification of PROMM 
could be the result of a number of reasons. The most 
likely explanation is based on a PD sample that is more 
heterogeneous than for the other diagnostic groups, for 
example due to the presence of different stages of the 
disease in the sample, with earlier stages differing with 
regard to the pain pattern from later stages. To address 
this, we indeed plan to perform a longitudinal analysis of 
the pain drawings in different disease stages as a follow 
up study.

The k-disease classifier of Pain2D achieved a high 
specificity for PROMM: only 17 non-PROMM PDs were 
classified as PROMM (false positives), resulting in a spec-
ificity of 90%. It is however impossible to say if this could 
be attributed to the higher sensitivities for classification 
of the other rare diseases as a result of their unique fea-
tures in the pain profile (e.g., painful feet for GBS, etc.), 
or vice versa, or (most likely) both. Of note, PROMM 
was the biggest sample with 89 PDs in total, as opposed 
to only between 29 and 59 PDs for the other diagnostic 
groups.

PDs from people with chronic pain are preferentially 
classified as any rare disease (EDS, GBS, FSHD, PROMM)
One reason why we included PDs from people with 
unspecific chronic pain in our study was to test if addi-
tional, non-specific pain patterns in patients with rare 
diseases (a “background pain noise”) changed the pain 
profile enough to interfere with classification. It turned 
out that the separation between CP and RD PDs was 
not an issue in our sample, as the number of false posi-
tives for the CP group was quite low with only 3 out of 
211 rare disease PDs classified as CP (Table 3). In addi-
tion, the PDs of the CP diagnostic group were not pref-
erentially classified as one specific rare disease, but were 
more or less randomly distributed into the five diagnostic 
groups (classification as PROMM in 14%, EDS in 26%, 
FSHD in 26% and GBS in 20%), which is reflected in the 
low sensitivity of 14% for CP (Table  3). Taken together, 
PD classification by Pain2D was not hampered in a rel-
evant manner in our sample group by the putative pres-
ence of a background pattern in RD pain profiles.

Table 3  Confusion matrix resulting from classification of all PDs with the k-disease classifier of Pain2D

Predicted

EDS GBS FSHD PROMM CP Sumtrue

True  EDS 38 11 8 1 1 59

 GBS 1 25 0 3 0 29

 FSHD 4 3 22 5 1 35

 PROMM 5 20 17 46 1 89

 CP 13 10 13 7 7 50

Sumpredicted 61 69 60 62 10 262

Sensitivity 0.644 0.862 0.629 0.517 0.140

Specificity 0.887 0.811 0.833 0.908 0.986



Page 10 of 13Emmert et al. Orphanet Journal of Rare Diseases           (2023) 18:70 

Discussion
Comparison of Pain2D generated pain profiles (PPs) 
to pain patterns described in the literature
We were able to show that Pain2D is a useful tool to gen-
erate disease specific pain patterns and utilize them for 
automated diagnostic support. The pain pattern of FSHD 
shows a similar distribution as described by Morís et al. 
[42]. The percentages they observed are slightly lower 
(72% as opposed to up to 90% for backpain), but the main 
localizations are the same. As expected, the Pain2D PP 
shows higher resolution (e.g., high percentages marked 
specifically the knees, while Morís et al. report only gen-
eral leg pain). The Pain2D generated EDS PP correlates 
with the description of EDS in the literature, as joint and 
spinal pain are known typical manifestations of EDS [43].

Similar observations can be made for GBS. Pain in dis-
tal extremities is a common symptom in GBS described 
in the literature [44], which fits to the Pain2D generated 
PP for GBS (~ 70% marked the feet). Of note, the Pain2D 
PP shows that the plantar sides of the feet are marked by 
far more patients than the dorsal side or the distal leg, 
and thereby adds details to the currently described obser-
vations with regard to pain in GBS.

Classification of PROMM PDs was less efficient than 
for the other diagnostic groups (52%), which seems to 
be related to more heterogeneous PDs. It is worth men-
tioning that the PROMM PDs differed with regard to 
the presence or absence of pain in the upper legs, which 
might be one factor that hampers classification. Indeed, 
descriptions of the pain pattern of PROMM vary a lot in 
the literature. The Pain2D generated PROMM pain pro-
file generally fits to the findings of Eger et al. [45]. In con-
trast, Peric et al. [46] observed higher pain frequencies in 
the lower legs (41%) than in the upper legs (30%) com-
pared to the Pain2D PP (~ 20 and ~ 60%, respectively). 
Our results show a higher difference in the frequencies 
between upper and lower legs compared to prior pub-
lished results, and we obtained overall lower pain fre-
quencies in nearly all body regions compared to George 
et  al. (e.g., 80% in upper legs) [47]. Taken together, the 
pain pattern in PROMM seems to differ among patients, 
which is consistent with more difficult classification. 
Indeed, its variable clinical manifestation is often dis-
cussed as a reason for PROMM being an underdiagnosed 
disease [39].

Potential usefulness of Pain2D as a DDSS
The binary classifier of Pain2D achieved a sensitivity 
of over 90% for all the diseases we investigated versus 
chronic pain, suggesting that Pain2D might be a use-
ful tool to ensure that rare diseases are taken into con-
sideration for the differential diagnosis of unclear pain 
manifestations. Furthermore, since the binary classifier 

performed generally with high accuracy, it might be use-
ful in the differential diagnosis of two similar diseases.

Generally speaking, many rare diseases present with 
pain as one of the first symptoms prompting patients to 
see a physician. For example, pain is described as one of 
the first symptoms of FSHD [33]. For PROMM, a study 
of 2013 has shown that leg pain is the first symptom for 
the disease in 5.2% of cases, in addition to a similar frac-
tion that presents with general pain at first [48]. As both 
pain types could potentially be detected by PD, we hope 
that Pain2D can contribute to the process of diagnosis for 
these patients in the future. In addition, all Pain2D appli-
cations are published as open-source and can be trained 
to generate specific pain profiles for many, if not most, 
rare diseases manifesting with pain as a symptom.

The sensitivity of the k-disease classifier of Pain2D 
ranged between 52 and 86% for our test sample. FSHD 
classification achieved a sensitivity of 63% and a speci-
ficity of 83%, compared to molecular genetic testing for 
FSHD with a sensitivity of 93% and a specificity of ca. 
98% [49]. As discussed above, PROMM was classified 
with a rather low sensitivity of 52% and specificity of 
91%. GBS was classified best with a sensitivity of 86% and 
a specificity of 81%. Standard diagnosis of GBS is based 
on clinical features, electrophysiological studies and cer-
ebrospinal fluid analysis [29, 30], so that no numerical 
results can be given for comparison. EDS classification 
achieved a sensitivity of 64% and specificity of 89%. Since 
EDS comprises a number of different entities, genetic 
testing is only available for some of those, while the most 
prevalent form, the hypermobile EDS, is diagnosed based 
solely on clinical evaluation with unknown accuracy. 
Given the simplicity and non-invasive nature of generat-
ing a pain drawing, a fully trained version of Pain2D with 
a comprehensive library of pain profiles could therefore 
indeed efficiently guide physicians in the search for rare 
diseases by pointing out the more likely candidates in 
order to initiate specific diagnostic procedures, especially 
when pain drawings are enhanced with additional patient 
information, for example from questionnaires. It thus 
could contribute to shortening the “diagnostic odyssey” 
that patients with rare diseases often have to endure. In 
specific cases, it might even develop as a diagnostic indi-
cator in its own right, conceivably in the differentiation 
of two similar diseases with a clear distinction in pain 
pattern.

Challenges and future directions
Although Pain2D achieved overall good results with clas-
sification of the five tested diagnostic groups, there are 
some limitations to the tool as of now. Firstly, the chosen 
classification strategy is sensitive to the presence of more 
than one pain pattern in one disease, which could be the 
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result of, e.g., changes over time and progression of the 
disease. This is due to the fact that similarity is measured 
against the PP, which could be understood as an “average 
PD” of the disease, that potentially masks the presence of 
more than one pattern per disease. Diseases with more 
than one “typical” manifestation of pain, or the presence 
of more complex pain patterns, could therefore pose a 
problem for Pain2D. For example, k-disease classifica-
tion of PROMM PDs turned out to be less sensitive then 
for the other groups (sensitivity 52%, specificity 91%), in 
part due to the presence of at least two subgroups of pain 
patterns in the PP (thighs marked vs. thighs not marked). 
While the chosen approach (similarity to PP) achieved 
superior results compared to a nearest neighbor classifier, 
which was tested during Pain2D development, this issue 
has to be addressed in the future. As one likely reason for 
the presence of different disease patterns in patients with 
the same disease are changes over time, a longitudinal 
study to follow disease progression is currently in prepa-
ration. In this case, as well as other cases of “more than 
one pain pattern” per disease, training Pain2D with sub-
groups could overcome the problem, as long as enough 
PDs per subgroup are available for training.

Secondly, for now Pain2D can recognize only four rare 
diseases and is based on a limited number of labeled data. 
This could be remedied over time by collecting more 
PDs. However, acquiring enough training data for a rare 
disease classifier is generally a challenge. Not only is the 
number of people suffering from a specific rare disease 
limited, but, as of now, ~ 7000 rare diseases are known, 
and the number is still growing. Pain2D therefore needs 
to be trained for many RDs presenting with pain before 
it can become a generally useful DDSS. PDs of many 
RDs need to be sampled and compiled into PPs, which 
is almost impossible for some ultra-rare diseases with 
only a few known cases. While this is a general unre-
solved problem for DDSS dealing with rare or ultra-rare 
diseases, there are attempts to overcome it. For example, 
the facial phenotype analyzer Face2Gene [12, 13] has 
recently been complemented by the GestaltMatcher algo-
rithm, an encoder for portraits that can match patients 
with similar disorders that were not included in the train-
ing data. It accomplishes this by placing individual por-
traits in a Clinical Face Phenotype Space derived from 
the training data, in which distances between cases rep-
resent syndromic similarity [14]. While this is a rather 
elegant approach, it is restricted to deep learning meth-
ods and needs a lot of training data, which we currently 
don’t have. Nevertheless, Pain2D can potentially grow 
over time by collecting data from many researchers/phy-
sicians, as it is available as a free and open-source tool.

Lastly, while classification of PDs with Pain2D-Tool 
worked overall well with our test data set, one has to 

take into account that the latter is not a representa-
tive sample of patients suffering from pain without a 
diagnosis. Prevalences of rare diseases are by defini-
tion low, with consequences for classification results 
in a clinical setting. For example, the k-disease classi-
fier preferentially mis-classified PDs from the CP group 
as rare (43 of 50, 86%), although the latter are far more 
often encountered in practice. As a result, many PDs in 
a realistic setting would likely be classified as rare (of 
which only a small percentage is truly rare), and the 
positive predictive value would be rather low due to its 
specificity and low prevalence. However, in the case of 
rare diseases, higher false positive rates/lower specifi-
cities are less problematic, as RDs are typically highly 
underdiagnosed, not overdiagnosed. As diagnostic 
aids for RDs are targeted towards helping physicians to 
take rare differential diagnoses into account, they are 
not meant as diagnostic methods on their own. Final 
diagnosis has always to be confirmed with other diag-
nostic procedures, making lower specificities more tol-
erable. Nevertheless, overall accuracy could potentially 
be improved by pre-testing in order to triage patients 
likely suffering from an undiagnosed rare disease. This 
could for example be achieved by using Pain2D in com-
bination with the Q53 questionnaire, which classifies 
answer patterns into rare somatic, common somatic, 
and psychosomatic diseases with sensitivities between 
87 and 89% and specificities between 84 and 88% [11]. 
Taken together, as Pain2D is a non-invasive and cost-
efficient software, its strength is the suggestion of pos-
sible diagnoses for further testing in order to abbreviate 
the diagnostic odyssey patients with rare diseases often 
have to endure, and we consider higher numbers of 
false positives from Pain2D to be an acceptable inter-
mediate step towards this goal.

Compared to our initial results with Pain2D [24], this 
study has two important innovations. Firstly, we were 
able to show that Pain2D is indeed able to distinguish 
between two related diseases of the same category (neu-
romuscular disorders; PROMM and FSHD). Secondly, we 
successfully used the new k-disease classifier of Pain2D 
for the classification of five diagnostic groups, including 
four rare diseases.

In conclusion, our study could show that Pain2D has 
the potential to develop into a full DDSS for pain-associ-
ated diseases with a focus on rare diseases, and opens up 
the route towards further exploitation of pain symptoms 
for AI-assisted diagnosis of rare diseases.
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