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Abstract 

Background Iron-refractory iron deficiency anaemia (IRIDA) is an autosomal recessive iron deficiency anaemia 
caused by mutations in the TMPRSS6 gene. Iron deficiency anaemia is common, whereas IRIDA is rare. The prevalence 
of IRIDA is unclear. This study aimed to estimate the carrier frequency and genetic prevalence of IRIDA using Genome 
Aggregation Database (gnomAD) data.

Methods The pathogenicity of TMPRSS6 variants was interpreted according to the American College of Medical 
Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) standards and guidelines. The 
minor allele frequency (MAF) of TMPRSS6 gene disease-causing variants in 141,456 unique individuals was examined 
to estimate the global prevalence of IRIDA in seven ethnicities: African/African American (afr), American Admixed/
Latino (amr), Ashkenazi Jewish (asj), East Asian (eas), Finnish (fin), Non-Finnish European (nfe) and South Asian (sas). 
The global and population-specific carrier frequencies and genetic prevalence of IRIDA were calculated using the 
Hardy–Weinberg equation.

Results In total, 86 pathogenic/likely pathogenic variants (PV/LPV) were identified according to ACMG/AMP guide-
line. The global carrier frequency and genetic prevalence of IRIDA were 2.02 per thousand and 1.02 per million, 
respectively.

Conclusions The prevalence of IRIDA is greater than previous estimates.

Keywords Iron-refractory iron deficiency anaemia (IRIDA), Carrier frequency, Genetic prevalence, Genome 
aggregation database (gnomAD), Transmembrane serine protease 6 (TMPRSS6), Rare diseases

Background
Iron-refractory iron deficiency anaemia (IRIDA) (OMIM: 
206200, ORPHA: 209981) is a refractory iron deficiency 
anaemia that is unresponsive to oral iron treatment [1–4], 
leading to microcytic hypochromic anaemia, low trans-
ferrin saturation and serum iron [5]. Symptoms of IRIDA 
are usually mild, including tiredness (fatigue), weakness, 
pale skin, dizziness, and exercise-induced dyspnoea. These 
symptoms are most pronounced during childhood. Most 
IRIDA patients have normal growth and development 
[5]. IRIDA is usually suspected in childhood based on the 
results of routine blood tests. Diagnosis is according to 
laboratory tests showing hypochromic microcytic anaemia 
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with low serum iron and transferrin saturation levels, and 
then the diagnosis is confirmed by genetic testing [6]. 
Treatment usually involves intravenous (IV) iron therapy 
[7].

IRIDA is a rare autosomal recessive disorder caused by 
mutations in the TMPRSS6 (transmembrane serine pro-
tease 6) gene [8]. The gene encodes a serine protease that 
plays an essential role in downregulating hepcidin, the key 
regulator of iron homeostasis [9–11], through the cleavage 
of the cell surface haemojuvelin BMP coreceptor (HJV), an 
activator of hepcidin expression [12–15]. The TMPRSS6 
gene, located on chromosome 22, spans 18 exons and com-
prises 51,125 base pairs, encoding a protein of 802 amino 
acids. Since 2008, more than 100 TMPRSS6 variants have 
been identified in patients with IRIDA [16–18]. (The full 
paper list and full variant list are available in the Science 
Data Bank (ScienceDB) repository).

As high-throughput sequencing technology has evolved, 
re-evaluation guidelines for interpreting and classifying 
the pathogenicity of identified variants have been imple-
mented. In addition, large-scale population databases have 
become widely available and can be used for assessment 
of genetic variants in rare diseases. In fact, for several dis-
eases, there is evidence that these databases have improved 
the interpretation and classification of variants in patients 
with monogenic disease and allowed better prediction of 
which variants are likely to cause disease. The most widely 
used large-scale reference dataset is from Genome Aggre-
gation Database (gnomAD), which consists of exome 
sequencing and genome sequencing data from unrelated 
individuals of diverse ancestries [19].

The World Health Organization (WHO) defines anae-
mia as a condition in which the number of red cells is 
insufficient to meet the body’s physiological needs. Iron 
deficiency anaemia (IDA) is the most common cause of 
anaemia worldwide. Although iron deficiency anaemia is 
relatively common [3], IRIDA is rare. Although its preva-
lence is unknown, the Orphanet database (https:// www. 
orpha. net/ consor/ cgi- bin/ index. php) estimates is to be less 
than 1 per 1 million. We attempted to obtain a more reli-
able estimate of the prevalence and carrier frequency of 
IRIDA from the Genome Aggregation Database (gnomAD) 
dataset using a previous protocol [20]. Additionally, we 
aimed to generate a curated artificial intelligence training 
dataset of TMPRSS6 variants for pathogenicity classifica-
tion and interpretation.

Methods
Identification of previously reported TMPRSS6 
disease‑causing variants
To evaluate the genetic spectrum of IRIDA, a com-
prehensive search was performed to identify all previ-
ously reported disease-causing TMPRSS6 gene variants. 

Searches were conducted in the PubMed or Scopus data-
base using the following combinations of search terms: 
iron deficiency anaemia, iron deficiency, iron-refractory 
iron deficiency anaemia, iron-refractory iron deficiency 
anaemia, Matriptase-2 (MT2), tmprss6, transmembrane 
serine protease 6, IRIDA, mutations, variants, variations, 
and mutants.

Two independent authors screened publications 
according to inclusion and exclusion criteria: original 
case reports reporting disease-causing variants of the 
TMPRSS6 gene were included, and variants in abstract, 
full-text, tables, figures, or supplementary figures and 
tables were extracted. Non-English-language articles, 
reviews, comments, editorials, letters, etc., and in  vitro 
and animal model studies were excluded. Common 
TMPRSS6 polymorphisms associated with iron defi-
ciency/iron deficiency anaemia in genome-wide associa-
tion studies were also excluded.

All publications were saved in Medline format and 
stored in the MySQL and MongoDB databases using 
NCBI Entrez Programming Utilities [17] (E-utilities) with 
the Python package biopython [18] and MySQL/Mon-
goDB database implementation.

Reported TMPRSS6 variants were also identified from 
Leiden Open Variation Database (LOVD) (https:// www. 
lovd. nl/), NCBI [21] ClinVar (https:// www. ncbi. nlm. nih. 
gov/ clinv ar/), dbSNP (https:// www. ncbi. nlm. nih. gov/ 
snp/), VarSome [22] (https:// varso me. com/), Ensembl [23] 
(https:// www. ensem bl. org/) UniProtKB [24] (https:// www. 
unipr ot. org/), Genomenon Mastermind [25] (https:// 
maste rmind. genom enon. com/), LitVar [26] (https:// www. 
ncbi. nlm. nih. gov/ resea rch/ litva r2/), Online Mendelian 
Inheritance in Man (OMIM) (https:// www. omim. org/) 
and HGMD (http:// www. hgmd. cf. ac. uk/ ac/ index. php).

Prediction and functional annotation for all TMPRSS6 
potential nonsynonymous single-nucleotide variants 
(nsSNVs) were compiled using dbNSFP 4 [27].

Identification and prediction of novel TMPRSS6 
disease‑causing variants
The gnomAD database (https:// gnomad. broad insti tute. 
org/) was searched for novel disease-causing TMPRSS6 var-
iants that had not yet been reported, and protein-truncating 
variants (PTVs) were examined (frameshifts, stop codons, 
initiator codons, splice donors and splice acceptors).

Interpretation of the pathogenicity of TMPRSS6 variants
The pathogenicity of variants was interpreted follow-
ing the protocol by Zhang et  al.[28] The pathogenic-
ity of all missense, synonymous, and protein-truncating 
TMPRSS6 variants was classified according to Stand-
ards and Guidelines of the American College of Medical 
Genetics and Genomics (ACMG) and the Association for 
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Molecular Pathology (AMP) [29] with the ClinGen Vari-
ant Curation Interface [30].

For missense and synonymous variants, we performed 
additional literature retrieval to curate in vitro or in vivo 
functional studies supportive of a damaging effect on 
TMPRSS6 missense/synonymous variants.

Variants classified as pathogenic and likely patho-
genic were included. Variants classified as benign, likely 
benign, or uncertain significance were excluded. Patho-
genic/likely pathogenic variants were included in the car-
rier frequency and genetic prevalence calculation.

Annotation of variants with minor allele frequencies 
(MAFs)
Each identified variant was normalized with HGVS 
nomenclature, SPDI [31], VCF, ClinVar, ClinGen Allele 
Registry [32], and dbSNP Reference SNP (rs or Ref-
SNP) using Mutalyzer [33] (https:// mutal yzer. nl/), NCBI 
Entrez Programming Utilities (E-utilities), VariantValida-
tor [34] (https:// varia ntval idator. org/) and Ensembl REST 
API (https:// rest. ensem bl. org/).

The canonical TMPRSS6 transcript (NM_001374504.1, 
3,265 bp) and protein (NP_001361433.1, 802 aa) selected by 
Matched Annotation from NCBI and EMBL-EBI (MANE) 
[35] differ from the 811 aa isoform in the literature. The dif-
ference between the two isoforms is that translation is initi-
ated at an alternate start codon MLLLFHSKRM [36].

gnomAD v2.1.1 VCF files in Parquet format were 
downloaded from Microsoft Azure Open Datasets with 
the Microsoft AzCopy tool. The minor allele frequency 
of the gnomAD population for the following ethnic 
groups were retrieved with Apache Drill, Apache Spark, 
and Apache Zeppelin: African/African American (AFR), 
American Admixed/Latino (AMR), East Asian (EAS), 
Non-Finish European (NFE) and South Asian (SAS).

Carrier frequency and genetic prevalence calculation
The carrier frequency and genetic prevalence of IRIDA 
were calculated based on the Hardy–Weinberg equation 
[37]. For a monogenic autosomal recessive disorder, the 
genetic prevalence is [1−

∏
i(1− qi)]

2 based on the the-
ory of probability, where  qi stands for each pathogenic/
likely pathogenic variant minor allele frequency. The 
genetic prevalence was approximately equal to ( qi)

2 , 
and the carrier frequency was 2(1−

∑
qi)

∑
qi ≈ 2

∑
qi . 

The disease prevalence was estimated by using the 
observed allele frequency of a pathogenic/likely patho-
genic variant in the gnomAD database as the direct esti-
mator for  qi. The disease prevalence can be estimated 
by [1−

∏
i(1−

ACi
ANi

)]
2
≈

∑
AF2

i  , where AC is the allele 
count, AN is the corresponding allele number and AF is 
the corresponding allele frequency.

The Python statistics package statsmodels and sci-
entific computing package NumPy and pandas were 
employed for calculating the 95% confidence interval 
(95% CI) for the binomial proportion of carrier frequency 
and the genetic prevalence with the Wilson Score inter-
val. Graphics were plotted using the R graphic package 
ggplot2.

Results
Identification of TMPRSS6 missense, synonymous 
and protein‑truncating variants
Comprehensive retrieval of IRIDA disease-causing vari-
ants resulted in the identification of 813 articles, of which 
39 were considered eligible according to the exclusion 
and inclusion criteria. All disease-causing variant ETL 
pipelines and tools are shown in Fig. 1. From these arti-
cles, 86 disease-causing variants in the TMPRSS6 gene, 
including 40 missense variants and 46 protein-truncating 
variants (PTVs), are classified as pathogenic/likely path-
ogenic according to the Standards and guidelines of the 
American College of Medical Genetics and Genomics 
and the Association for Molecular Pathology (missense 
variants are shown in Table 1; all variants are listed in the 
Science Data Bank (ScienceDB) online data repository). 
The most common mutation consequence is missense, 
accounting for 46.5% (40/86) of all pathogenic/likely 
pathogenic variants and more than half of the total allele 
frequency.

One synonymous variant (c.1086G > A/c.1086G > T, 
p.Thr362 =) is classified as likely pathogenic [38] (PP3, 
PP4, PM2, and PS3 criteria). However, this variant was 
excluded from the gnomAD dataset because of low con-
fidence pLoF.

Forty-six protein-truncating variants were divided into 
three categories: frameshift (n = 20), nonsense (n = 17), 
and splice acceptor/donor (n = 9). PTVs accounted for 
more than half of the number of pathogenic/likely patho-
genic variants after filtering (low confidence pLoF, LCR, 
Not LoF) but less than half of the total allele frequency.

Estimation of population prevalence and the carrier 
frequency of IRIDA
Pooling of the allele frequencies for all pathogenic/likely 
pathogenic variants provided a global minor allele fre-
quency of 0.001, which is equivalent to a genetic preva-
lence of 1.0228 per 1 million (95% CI: [0.82, 1.28]) and 
a carrier frequency of 2.02 per 1 thousand (95% CI: [1.8, 
2.28]). The African population had the highest preva-
lence, at 3.55 per million (95% CI: [1.76, 7.18]), with car-
rier frequency at 3.77 per thousand. Both non-Finish 
European and East Asian populations had a prevalence 
of greater than 1 per million, whereas the prevalence of 
American/Admixed Latino and South Asian populations 
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was smaller than 1 per million. Ashkenazi Jewish and 
Finnish populations were not analysed because the 
sample size was too small to be calculated (Table 2 and 
Fig. 2).

Discussion
IRIDA is a rare autosomal recessive disorder caused by 
homozygous or compound heterozygous mutations in 
the transmembrane serine protease 6 (TMPRSS6) gene. 
IRIDA patients have microcytic hypochromic anae-
mia, low serum iron, and transferrin saturation. The 
prevalence is unknown. In this study, we sought to esti-
mate the prevalence of IRIDA using 100  k-scale popu-
lation genome data and to deepen our understanding 
of TMPRSS6 genetic variation. Using gnomAD data, 
we found that IRIDA affects 1.0228 per 1 million in 
the global population, which is higher than previous 
Orphanet database estimates of less than 1 per 1 million.

The main strength of this study was the use of 86 
TMPRSS6 variants from a population of more than 
100  k for prevalence estimates. In addition, we pro-
duced a curated variant dataset for TMPRSS6 that will 
be useful for further artificial intelligence-based classi-
fication of germline variant pathogenicity.

IRIDA can be difficult to distinguish from acquired 
iron deficiency unresponsive to oral iron therapy  [39]. 
Overall, IRIDA is a genotypically and phenotypically 
heterogeneous disease. Allelic TMPRSS6 mutations are 
found in most patients with IRIDA. An algorithm has 
been developed based on blood and plasma values to 
distinguish patients with IRIDA resulting from biallelic 
TMPRSS6 mutations [40–42].

Combined heterozygous mutations in TMPRSS6 
and activin A receptor type 1 (ACVR1) have been 
reported to cause IRIDA [43]. High hepcidin expres-
sion in the proband was reported with ACVR1 R258S 
and TMPRSS6 I212T. This digenic model suggests that 

Literature retrieval database search

variants curation

variants classification

variants calculation
(n=86)

Ensembl REST API
Allele Registry API

Variant Curation Interface

gnomAD
Apache Spark/Drill/Zeppelin

NCBI E-utilities
dbSNP/ClinVar/LitVar

HGMD/Ensembl Variation

Extract

Transformation

Load

Fig. 1 ETL pipeline of curation and classification of TMPRSS6 pathogenic/likely pathogenic variants. Extract: variants from literature retrieval and 
database search. Transformation: raw variant normalized HGVS nomenclature and curated. Load: based on the Hardy-Weinberg equation and 
binomial distribution model calculation
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combined heterozygous mutations in TMPRSS6 and 
other BMP/SMAD signalling pathway genes are likely 
to cause IRIDA. This may explain index cases in which 
there is only one pathogenic mutation and one or more 
single-nucleotide polymorphism combination.

TMPRSS6 polymorphisms are more frequent than 
germline TMPRSS6 mutations, and common TMPRSS6 
variants are associated with erythrocyte traits, includ-
ing haemoglobin concentration (Hb), haematocrit (Hct), 
mean corpuscular volume (MCV), mean corpuscular 

Table 1 TMPRSS6 pathogenic/likely pathogenic missense variants present in gnomAD with global minor allele frequencies

† MAF, minor allele frequency.

Genomic position Nucleotide change Amino acid change gnomAD  MAF†

22–37494466-G-T 326C > A Ala109Asp 0.000007953

22–37494467-C-T 325G > A Ala109Thr 0.000003976

22–37492697-T-C 395A > G Tyr132Cys 0.000005758

22–37491614-A-G 608 T > C Ile203Thr 0.00001608

22–37491613-T-C 609A > G Ile203Met 0.000004025

22–37491614-A-T 608 T > A Ile203Lys 0.000004021

22–37485778-G-T 676C > A Leu226Met 0.000004077

22–37485747-C-G 707G > C Cys236Ser 0.00004799

22–37485747-C-T 707G > A Cys236Tyr 0.000004102

22–37485646-C-T 808G > A Gly270Arg 0.00002176

22–37482412-G-A 884C > T Ser295Leu 0.000007375

22–37480876-C-T 977G > A Cys326Tyr 0.000006391

22–37480819-G-A 1034C > T Pro345Leu 0.00001131

22–37471316-A-G 1201 T > C Cys401Arg 0.000008036

22–37471291-T-C 1226A > G Tyr409Cys 0.000004

22–37471220-C-T 1297G > A Gly433Arg 0.000003981

22–37469593-C-T 1534G > A Asp512Asn 0.00003183

22–37469591-G-C 1536C > A Asp512Glu 0.000003979

22–37469590-C-T 1537G > A Glu513Lys 0.00001591

22–37466665-C-A 1700G > T Arg567Leu 0.000004018

22–37466665-C-T 1700G > A Arg567His 0.00003134

22–37466666-G-A 1699C > T Arg567Cys 0.00003215

22–37466624-A-G 1741 T > C Trp581Arg 0.000003997

22–37466603-G-A 1762C > T Arg588Trp 0.00001599

22–37466602-C-T 1763G > A Arg588Gln 0.00001598

22–37466585-C-G 1780G > C Gly594Arg 0.00005675

22–37466584-C-G 1781G > C Gly594Ala 0.000003991

22–37466585-C-A 1780G > T Gly594Trp 0.00003193

22–37466578-G-A 1787C > T Ala596Val 0.00003188

22–37466579-C-T 1786G > A Ala596Thr 0.000004002

22–37466576-G-A 1789C > T Leu597Phe 0.000007982

22–37465232-A-C 1994 T > G Leu665Arg 0.000004545

22–37465149-A-G 2077 T > C Cys693Arg 0.000006261

22–37462272-A-G 2257 T > C Ser753Pro 0.000007297

22–37462263-G-C 2266C > G Pro756Ala 0.00002173

22–37462262-G-A 2267C > T Pro756Leu 0.00001448

22–37462236-G-A 2293C > T Arg765Cys 0.00002154

22–37462235-C-T 2294G > A Arg765His 0.00002154

37499456A > T 2 T > A Met1Lys 0.000003977

37499455C > T 3G > A Met1Ile 0.000003977
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haemoglobin (MCH), mean corpuscular haemoglobin 
concentration (MCHC) and red blood cell (RBC) count 
[44, 45]. Additionally, TMPRSS6 polymorphisms in iron 
deficiency anaemia are partially responsive to oral iron 
treatment [46, 47]. A 3-tier classification system for vari-
ants of the TMPRSS6 gene has been proposed to better 
understand and define the IRIDA spectrum [48].

Synonymous mutations are also called neutral or silent 
mutations. Synonymous mutations in protein-coding 
genes do not alter protein sequences and are thus gen-
erally presumed to be neutral. Shen et  al. constructed 
8,341 yeast mutants and measured their fitness relative 
to wildtype. They found that three-quarters of synony-
mous mutations resulted in a significant reduction in fit-
ness; the distribution of fitness effects was overall similar, 
albeit nonidentical [49].

IRIDA is not on the first national list of rare diseases 
issued by China, and the prevalence of IRIDA in China 

has not been estimated [50]. The National Rare Diseases 
Registry System (NRDRS) has not registered any IRIDA 
cases [51]. We demonstrated the power and limitations 
of the 100 k population genome database [52, 53] to cal-
culate the prevalence of rare diseases, but gnomAD and 
the Trans-Omics for Precision Medicine (TOPMed) 
population are of predominantly non-Asian ancestry. 
The Chinese population genome project will fill this 
gap. Currently, NyuWa [54], Westlake BioBank for Chi-
nese (WBBC) [55], and PGG. Han [56], China Metabolic 
Analytics Project (ChinaMAP) [57] have been released. 
We will estimate the prevalence of IRIDA and other rare 
diseases through the aggregation of Chinese population 
genome data.

The number of TMPRSS6 curated variants in the Clin-
Var database is far less than the number of variants we 
manually curated, and the state-of-the-art model EVE 
(evolutionary model of variant effect) uses the ClinVar 
dataset as the training set [58]. ClinGen Variant Cura-
tion Expert Panels (VCEPs) [59] define biocuration appli-
cation of ACMG/AMP guidelines for sequence variant 
interpretation for specific genes or diseases. Additionally, 
the ClinGen Variant Curation Interface [30] is a variant 
classification platform for the application of evidence cri-
teria from ACMG/AMP guidelines for curating variant 
classifications.

In conclusion, through a comprehensive analysis of 
genetic variation in TMPRSS6, we expanded our recogni-
tion of disease-causing mutations to 86 variants. IRIDA 
is a rare disease, and these data can help clinicians to 
diagnose IRIDA that is unlikely to represent a significant 
proportion of patients presenting with refractory iron 
deficiency or iron-deficiency anaemia.

Fig. 2 Genetic prevalence and carrier frequency of IRIDA. A IRIDA genetic prevalence estimated from gnomAD allele frequencies. B IRIDA carrier 
frequency among diverse population. African/African American (afr), American Admixed/Latino (amr), Ashkenazi Jewish (asj), East Asian (eas), 
Finnish(fin), Non Finnish European (nfe) and South Asian (sas), other (oth)

Table 2 Estimated prevalence and carrier frequency among 
ethnicities and ancestries

†CI: confidence interval.

Population Genetic prevalence 
(per million)

Carrier 
frequency (per 
thousand)

95% CI 95% CI†

Non-Finnish European 1.54 0.87, 2.5 2.48 2.11, 2.92

American Admixed/Latino 0.14 0.05, 0.41 0.75 0.44, 1.29

African/African American 3.55 1.76, 7.18 3.77 2.65, 5.36

South Asian 0.75 0.35, 1.6 1.73 1.19, 2.53

East Asian 1.51 0.67, 3.42 2.46 0.69, 2.18

All 1.02 0.82, 1.28 2.02 1.8, 2.28
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