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Abstract 

Background:  Acid sphingomyelinase deficiency (ASMD) is a lysosomal disorder caused by deficiency of acid sphin‑
gomyelinase (ASM) leading to the accumulation of sphingomyelin (SM) in a variety of cell types. Lysosphingomyelin 
(LysoSM) is the de-acetylated form of SM and it has been shown as a biomarker for ASMD in tissues, plasma, and dried 
blood spots (DBS) and lysosphingomyelin-509 (LysoSM509) is the carboxylated analogue of LysoSM. High levels of 
Lysosphingomyelin 509 (LysoSM509) have also been shown in ASMD patients. In this study, we report the utility of 
the quantification of LysoSM and LysoSM509 in DBS of patients from Latin America with ASMD by ultra-performance 
liquid chromatography tandem mass spectrometry (UPLC-MS/MS).

Results:  DBS samples from 14 ASMD patients were compared with 15 controls, and 44 general newborns. All 
patients had their diagnosis confirmed by the quantification of ASM and the measurement of the activity of chito‑
triosidase. All patients had significantly higher levels of lysoSM and lysoSM509 compared to controls and general 
newborns.

Conclusions:  The quantification of lysosphingolipids in DBS is a valuable tool for the diagnosis of ASMD patients 
and lysoSM can be useful in the differential diagnosis with NPC. This method is also valuable in the ASMD newborn 
screening process.

Keywords:  Acid sphingomyelinase deficiency, Lysosphingomyelin, Tandem mass spectrometry, Biomarker, Niemann-
Pick type a/b
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Introduction
Acid sphingomyelinase deficiency (ASMD) or Niemann-
Pick type A/B (OMIM#257,220, and 607,616, respec-
tively) is a lysosomal disorder caused by the deficiency of 
acid sphingomyelinase (ASM) due to pathogenic variants 
in the SMPD1 gene [1–4].

ASM is required for the metabolism of sphingomy-
elin, and ASMD has a progressive course due to the 
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continuous lysosomal accumulation of sphingomyelin in 
a variety of cell types. The disease severity is determined 
by the degree of the organomegaly, presence or absence 
of neurological impairment, and the rate of progression. 
There is a broad phenotypical spectrum, with ASMD 
type A as the most severe form usually presenting infan-
tile neurovisceral impairment (hepatosplenomegaly, neu-
rologic deterioration, failure to thrive, cherry-red spot of 
the macula of the retina, interstitial lung disease that can 
lead to infection or respiratory failure) [3, 5, 6]; ASMD 
type B usually starts later than ASMD type A, with 
patients showing visceral impairment (hepatosplenomeg-
aly, progressive liver and pulmonary impairment, osteo-
penia, atherogenic lipid profile) but with no significant 
neurological impairment [1, 3]; and patients with inter-
mediate symptoms between ASMD type A and ASMD 
type B are classified as ASMD type A/B and may present 
some neurological manifestations [3].

ASMD affects all populations with a variable incidence 
in different ethnicities [7–12]. There is probably underdi-
agnosis of AMSD, with an incidence estimated at approx-
imately 0.5 per 100,000 live births [2, 13]. The incidence 
rates are likely to be better defined with the inclusion of 
lysosomal disorders in newborn screening [14].

Sphingomyelin (SM) is the substrate for ASM that 
cleaves the phosphorylcholine linkage of SM produc-
ing ceramide [15]. SM is a major compound of most cell 
membranes and coupled with cholesterol constitutes 
most of the membrane rafts [16–18]. In the deficiency 
of ASM, there is primary storage of SM, but also second-
ary storage of other lipids such as cholesterol and gan-
gliosides leading to the impairment of several cellular 
processes [15, 19].

Lysosphingomyelin (LysoSM), the de-acetylated form 
of SM and lysosphingomyelin (LysoSM509), the car-
boxylated analogue of LysoSM, have been shown as a 
biomarker for ASMD in tissues, plasma, and dried blood 
spots (DBS) [20–27]. High levels of Lysosphingomy-
elin 509 (LysoSM509) have also been shown in ASMD 
patients [23, 28]. Biomarkers such as lysosphingolipids 
(LysoSM & LysoSM509) can be used as biomarkers for 
ASMD and Niemann-Pick disease type C (NPC). This 
quantification is useful for the diagnosis of this patients 
and these markers can also be used as second-tier in 
newborn screening [29]. In this study, we report the util-
ity of the quantification of LysoSM and LysoSM509 in 
DBS for the diagnosis of ASMD, by the investigation of 
ASMD patients from Latin America.

Materials and methods
Samples
Dried blood samples (DBS) were collected from patients 
at the Medical Genetics Service from Hospital de Clínicas 

de Porto Alegre (HCPA). All tests were performed as part 
of the program developed by the LSD Brazil Network, 
which aims to provide a diagnosis to patients with lysoso-
mal disorders. DBS was collected from 14 ASMD patients 
and compared with DBS from 15 control samples and 44 
general newborns. Plasma was available in 6 samples and 
leukocytes were separated in 4 of these samples. Ethical 
approval was obtained from the Ethics Committee of the 
HCPA (2006–0351). All samples were stored at − 20  °C 
before the analysis.

Chemicals and reagents
Ultrapure water was obtained from the Milli-Q system 
from Millipore (Bedford, USA). Organic solvents such as 
LC–MS grade methanol, and chloroform were purchased 
from Sigma Aldrich (Saint Louis, USA), and HPLC grade 
acetonitrile was purchased from JT Baker® (Radnor, 
USA). Ultrapure formic acid was purchased from Sigma 
Aldrich (Saint Louis, USA). As standard Lyso-sphingo-
myelin-d7 (LysoSM-d7) was purchased from Avanti Polar 
lipids (Alabaster, USA). The standard stock solution of 
LysoSM-d7 was prepared with a final concentration of 
5 mM (1 mg of LysoSM-d7 was weighed and dissolved in 
424 uL of 2:1 chloroform/methanol). The extraction solu-
tion with the internal standard was prepared in a solution 
of 80v/15v/5v (methanol:acetonitrile: water, respectively) 
at 2.5 nmoL/L and it was stored at − 20 °C [23].

Sample preparation
LysoSM & LysoSM509
Samples were prepared according to the method previ-
ously described by Polo et al. [23]. Briefly, a single 3.2 mm 
disc was punched into a 96-well polypropylene plate with 
100uL of 2.5 nmoL/L of the Lyso-SMd7 and the plate was 
incubated with a shaker (500 RPM) for 1 h. The plate was 
centrifuged at 3000 G for 5  min. The supernatant was 
transferred to a new plate and 50uL of MilliQ water was 
added. 10uL were injected into the ultra-performance 
liquid chromatography tandem mass spectrometer 
(UPLC-MS/MS).

Enzyme assays
ASM activity was quantified in DBS by MS/MS with the 
NEOLSD™ from Perkin Elmer (Turku, Finland) [30, 31] 
and the cutoff was established as below 0.59 nmoL/h/
mL. ASM activity was also quantified in DBS or leu-
kocytes by the radioisotopic method with 14C by the 
method described by Pentchev and cols [32]. The cutoff 
was established as below 4.8 nmoL/24 h/mL in DBS and 
below 0.74 nmoL/h/mg of protein in leukocytes. The chi-
totriosidase activity was quantified by fluorimetry in DBS 
or plasma according to the method described by Hollak 
and cols [33] and the reference range was from 0 to 44 
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nmoL/h/mL in DBS and from 8.8 to 132 nmoL/h/mL in 
plasma.

UPLC‑MS/MS
The mass spectrometer was a Xevo TQ-S micro from 
Waters (Milford, USA). Separation occurred on an XSe-
lect® CSH™ C18 3.5  µm 2.1 × 50  mm column from 
Waters (186,005,255) (Milford, USA) that was kept 
at 55  °C. The method was first developed by Polo et  al.  
[24]. The mobile phase was a gradient elution of 70:30 
(water/acetonitrile) with 0.1% formic acid (solution A) to 
65:35 (isopropanol/acetonitrile) with 0.1% formic acid. 
The flow rate was 0.8  mL/min, and the gradient was as 
follows: at 0 min. 99.5% solution A, 0.75 min. 75% solu-
tion A, 1 min. 40% solution A, 1.5 min. 25% solution A, 
1.80 min. 0 solution A, 2.15 min. 0 solution A, 2.20 min. 
99.5% solution A. The mass spectrometer was oper-
ated with electrospray ionization in the positive mode 
with multiple reaction monitoring (MRM). The MS/MS 
parameters were: source temperature of 150 °C, capillary 
of 3.5 kV, cone 30 V, collision energy 22 V, dessolvation 
temperature 600 °C, dessolvation 1100 L/h, cone 50 L/h. 
Precursor and product ions (m/z) were used to quan-
tify as follows for LysoSM 465.4, 184; LysoSM-D7 472.4, 
184; and LysoSM-509 509,184. 10 uL of each sample was 
injected with a running time of 2.20 min.

Statistical analyses
Statistical analyses were performed using GraphPad 
Prism 8.0. Normality and lognormality tests were per-
formed to verify if the samples were following a normal 
(Gaussian) distribution by the following methods: Ander-
son–Darling test, D’Agostino & Pearson test, Shapiro–
Wilk test, and Kolmogorov–Smirnov test. The samples 
were not following a normal distribution, so the Mann–
Whitney test was used for the comparison of lysoSM and 
lysoSM509 levels in untreated ASMD patients, controls, 
and general newborns, at the level of significance of 0.05. 
Pearson’s correlation with a 95% confidence interval was 
used to analyze lysoSM x lysoSM509 and chitotriosidase 
x lysoSM or LysoSM509 levels.

Results
Patient demographics
A total of 14 patients with ASMD, 15 controls, and 
44 general newborns were analyzed. All patients with 
ASMD had ASM deficiency confirmed in leukocytes or 
DBS by fluorimetry or by MS/MS in DBS (Table 1).

57% of the patients were females. The mean age for the 
ASMD patients was 7.9  years of age (range: 7  months 
to 39.1 years of age). The mean age for the controls was 
14 years old (range: 3 months to 69.7 years old).

Table 1  Distribution of ASMD patients according to age at diagnosis, country, LysoSM, LysoSM509, and ASM activity

n/a not available, DBS dried blood spots, ASM acid sphingomyelinase, ASMD acid sphingomyelinase deficiency
a Patients 6 and 7 are siblings from a non-consanguineous family
b ASM cutoff for affected ASMD patients by MS/MS < 0.59 nmoL/h/mL
c ASM cutoff for affected ASMD patients in DBS < 4.8 nmoL/24 h/mL by the 14C radioisotopic method
d ASM cutoff for affected ASMD patients in leukocytes < 0.74 nmoL/h/mg of protein by the 14C radioisotopic method
e Reference range of chitotriosidase in plasma = 8.8–132 nmoL/h/mL
f Reference range of chitotriosidase in DBS = 0–44 nmoL/h/mL

ID Gender Age at 
diagnosis

Country LysoSM 
(nmoL/L)

LysoSM509 
(nmoL/L)

ASM in DBS by MS/
MS (nmoL/h/mL)b

ASM in DBS or 
leukocytes by the 14C 
method

Chitotriosidase 
levels (nmoL/h/
mL)

1 Female 1.1 Brazil 3356 32,213 0.12 1c 1475e

2 Male 6.7 Brazil 750 32,767 n/a 0.6c 738e

3 Female 5.9 Brazil 547 19,826 n/a 0.6c 2.3e

4 Female 2.8 Brazil 539 22,573 n/a 0.20d 944e

5 Male 1 Brazil 1490 45,082 n/a 0.10d 1334e

6a Female 3.9 Brazil 400 21,812 0.05 n/a n/a

7a Female 12.5 Brazil 361 17,333 0.06 n/a n/a

8 Female 39.1 Brazil 840 65,404 0.08 n/a 356f

9 Male 12.5 Brazil 577 42,215 0.21 n/a 290f

10 Female 39.1 Brazil 697 36,031 0.26 1.1c 125f

11 Male 14.1 Brazil 692 32,365 n/a 0.2c 429e

12 Male 4.7 Ecuador 277 16,806 0.47 n/a n/a

13 Female 2.7 Brazil 1244 22,747 0.06 0.7c 290f

14 Male 0.7 Brazil 790 32,988 n/a 0.5c Undetectablef
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The mean level of LysoSM in the patient samples was 
897 nmoL/L (range: 277–3356 nmoL/L). The mean level 
of LysoSM in the controls was 60 nmoL/L (range: 28–114 
nmoL/L). The mean level of LysoSM in the general new-
borns was 75 nmoL/L (range: 38–104 nmoL/L) (Fig.  1). 
The lysoSM levels were significantly higher in ASMD 
patients compared controls (P < 0.0001), and general 
newborns (P < 0.0001) (Fig. 1).

The mean level of LysoSM509 in the patient samples 
was 31,440 nmoL/L (range: 16,806–65,404 nmoL/L). 
The mean level of LysoSM509 in the controls was 1,088 

nmoL/L (range: 536–2,534 nmoL/L). The mean level of 
LysoSM509 in the general newborns was 1,689 nmoL/L 
(range: 840–3,332 nmoL/L) (Fig. 2). The lysoSM509 levels 
were significantly higher in ASMD patients compared to 
controls (P < 0.0001), and general newborns (P < 0.0001) 
(Fig. 2).

There is a positive correlation between the levels of 
lysoSM and lysoSM509 with Pearson’s correlation coeffi-
cient of 0.6896 (P < 0001) (Fig. 3). There is no correlation 
amongst lysoSM x age (P = 0.4900), and LysoSM509 x age 
(P = 0.7151).

Fig. 1  A Distribution of lysoSM in ASMD patients, controls, and general newborns according to age. B Median levels of lysoSM in ASMD patients, 
controls, and general newborns with a 95% confidence interval

Fig. 2  A Distribution of lysoSM509 in ASMD patients, controls, and general newborns according to age. B Median levels of lysoSM509 in ASMD 
patients, controls, and general newborns with a 95% confidence interval
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Chitotriosidase activity levels were available for 11 
patients (Table  1). Five out of 6 samples had elevated 
levels of chitotriosidase activity in plasma (reference 
range = 8.8–132 nmoL/h/mL) and one sample had a 
deficiency of chitotriosidase activity in plasma (Table 1). 
Four out of 5 samples had elevated levels of chitotriosi-
dase activity in DBS (reference range = 0–44 nmoL/h/
mL) and one sample had a deficiency of chitotriosidase 
activity in DBS (Table 1).

Pearson’s correlation coefficient was used to explore 
if there was a correlation between the activity levels of 
plasmatic chitotriosidase x lysoSM or lysoSM509 and 
the activity levels of chitotriosidase in DBS x lysoSM or 
lysoSM509. No correlations were observed in the activity 
levels of plasmatic chitotriosidase, with Pearson’s corre-
lation coefficient of 0.73738 for lysoSM (P = 0.0944) and 
0.62269 for lysoSM509 (P = 0.1867). No correlations were 
observed in the activity levels of DBS chitotriosidase with 
Pearson’s correlation coefficient of − 0.25083 for lysoSM 
(P = 0.6316) and − 0.79272 for lysoSM509 (P = 0.06).

Discussion and conclusions
The quantification of lysosphingolipids (lysoSM and lys-
oSM509) has been shown extremely useful in the diag-
nosis and monitoring of patients with ASMD and NPC 
[24, 29, 34–36]. The quantification of lysosphingolipids 
coupled with chitotriosidase activity has been suggested 
as a first-tier approach for patients with lipid storage dis-
orders [36].

In this study, we have quantified the levels of lysoSM 
and lysoSM509 in DBS of patients affected by ASMD, 
controls, and general newborns. We have seen that lys-
oSM is a relevant biomarker for the diagnosis of ASMD 
(Fig.  1, P < 0.0001). The levels of lysoSM509 in our 
patients were very elevated (Fig.  2, P < 0.0001) (aver-
age = 31,440 nmoL/L, range: 16,806–65,404 nmoL/L) in 
accordance with data from the literature [22]. The com-
bined determination of both of these biomarkers in a 

single DBS punch seems to allow the discrimination of 
ASMD from NPC, as ASMD patients will have elevated 
levels mainly of lysoSM, while both ASMD and NPC 
patients will have elevated levels of lysoSM509 [36, 37].

Increased levels of chitotriosidase activity have already 
been reported elevated in several LSDs due to mac-
rophage activation [1, 33, 36, 38–40]. In our patients, 
82% of them had elevated levels of chitotriosidase activ-
ity and two had deficient levels that are possibly due to 
polymorphisms or variants (molecular analysis of the 
CHIT1 would be needed to confirm this assumption) 
(Table 1) [1, 41, 42]. Furthermore, there was no correla-
tion between higher levels of chitotriosidase activity and 
higher levels of lysoSM & lysoSM509.

In this study, we were limited by the lack of clinical 
information so we could not correlate the levels of lys-
osphingolipids with clinical severity. We were also lim-
ited by the fact that we did not have information about 
their genotypes to perform a correlation between the 
genotype and the lysoSM & lysoSM509 biochemical phe-
notype. Another limitation was due to the fact that no 
newborn ASMD samples were available to further evalu-
ate age-correlation. However, our youngest patient was 
7 months-old (Table 1).

The fact that both of these lysosphingolipids can be 
assayed in a single DBS sample makes its measurement 
very convenient, especially for large countries like Brazil 
where shipment of samples in refrigerated packs faces 
many difficulties. This kind of shipment is even more dif-
ficult when country borders need to be crossed. In May of 
2021, the Brazilian government has approved the inclu-
sion of LSDs in the nationwide public newborn screening 
program (Law 14.124/2021) [43]. The Brazilian Ministry 
of Health has not defined which LSDs will be included 
yet, but ASMD should fulfill criteria to be included, as 
the activity of ASM and/or the levels of lysoSM and lys-
oSM509 can be measured in DBS, with genotyping of 
the SMPD1 gene also possible in the same DBS sample, 
allowing diagnosis of the disease in the newborn period, 
which will be even more important as specific therapies 
are becoming available.
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