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Do patients with Prader–Willi syndrome 
have favorable glucose metabolism?
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Abstract 

Background:  In recent years, more studies have observed that patients with Prader–Willi syndrome have lower insu-
lin levels and lower insulin resistance than body mass index-matched controls, which may suggest protected glucose 
metabolism.

Method:  The PubMed and Web of Science online databases were searched to identify relevant studies published in 
the English language using the terms “Prader–Willi syndrome” with “glucose”, “insulin”, “diabetes mellitus”, “fat”, “adipo*”, 
“ghrelin”, “oxytocin”, “irisin” or “autonomic nervous system”.

Results:  The prevalence of impaired glucose intolerance, type 2 diabetes mellitus and some other obesity-associated 
complications in patients with Prader–Willi syndrome tends to be lower when compared to that in general obesity, 
which is consistent with the hypothetically protected glucose metabolism. Factors including adipose tissue, adi-
ponectin, ghrelin, oxytocin, irisin, growth hormone and the autonomic nervous system possibly modulate insulin 
sensitivity in patients with Prader–Willi syndrome.

Conclusion:  Although lower insulin levels, lower IR and protected glucose metabolism are widely reported in PWS 
patients, the causes are still mysterious. Based on existing knowledge, we cannot determine which factor is of utmost 
importance and what are the underlying mechanisms, and further research is in urgent need.
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Introduction
Prader–Willi syndrome (PWS) is a rare and severe neu-
rodevelopmental disorder resulting from the absence of 
expression of the paternal chromosome 15q11.2-q13.1 
[1]. This syndrome is mainly described as marked obesity, 
severe hyperphagia, short stature, cryptorchidism, as well 
as mental retardation; PWS is the most common genetic 
and syndromic cause of obesity [1]. However, despite 
their severe obesity, PWS children and adults are gener-
ally reported to have significantly lower circulating insu-
lin levels and lower insulin resistance (IR)/higher insulin 

sensitivity (IS) compared to those of body mass index 
(BMI)-matched obese controls [2]. That said, scant data 
exist for PWS infants. Moreover, several studies showed 
no differences in insulin or IR in obese PWS patients and 
controls [3, 4]. Low insulin levels and IR are thought to 
be protective factors against obesity-associated com-
plications. Accordingly, one may hypothesize that PWS 
patients have favorable glucose metabolism compared to 
general obesity. However, is there sufficient evidence to 
prove this hypothesis? Furthermore, if PWS patients own 
favorable glucose metabolism, what may be the causes? 
This review describes existing knowledge about glucose 
metabolism in PWS and tries to identify possible factors 
modulating IR in PWS patients.
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IR and obesity‑associated complications in PWS
Type 2 diabetes mellitus (T2DM) is a common obesity-
associated complication in PWS (Table  1). As in the 
general population, obesity status plays a major role in 
T2DM and in metabolic syndrome development in PWS 
[3–7]. Without appropriate treatment, PWS patients can 
develop severe obesity and subsequently can develop 
T2DM at quite a young age. A mean age of 20  years of 
onset of T2DM in PWS patients was reported by Butler 
et al. [8]. Some studies even observed that PWS patients 
developed T2DM in the early teenage years [9]. How-
ever, the prevalence of impaired glucose intolerance, 
T2DM or metabolic syndrome in PWS tends to be lower 
when compared to that in obese controls (as presented in 
Table 1) [4, 10, 11]. Thus, there seem to be protective fac-
tors for glucose metabolism in PWS. The deduction that 
PWS patients have lower IR than BMI-matched controls 
is common in much of the published literature (Table 2). 
Some studies observed lower fasting or post-prandial 
insulin levels but intact glucose levels in PWS [12–14]. 
Others used HOMA IR index (HOMA-IR), HOMA IS 
index, QUICKI, or the log Matsuda index to prove lower 
IR in PWS [2, 15, 16]. One study calculated the cutoff val-
ues of HOMA-IR for PWS and made the conclusion that 
PWS patients were more sensitive to insulin than non-
syndromic T2DM patients [17]. Because IR is an impor-
tant risk factor for developing T2DM, the relatively lower 
IR may prevent T2DM in PWS patients.

The prevalence of other obesity-associated compli-
cations is also lower in PWS patients. For example, the 
prevalence of non-alcoholic fatty liver disease (NAFLD) 
in women with PWS was significantly lower than in non-
PWS women matched based on percent body fat (PBF) 

[18]. Fintini et al. [10] reported that G2 stage of NAFLD 
was significantly less frequent in PWS children than in 
BMI-matched peers. The prevalence of coronary artery 
disease also appears to be lower in PWS than in simple 
obesity [19]. Because IR also plays an important role in 
the development of NAFLD and coronary artery disease, 
it is very likely that the lower IR leads to the lower preva-
lence of NAFLD or coronary artery disease in PWS [20, 
21]. However, whether these conclusions are applicable 
to the majority of PWS patients needs more study.

Factors modulating IR in PWS
Adipose tissue and IR in PWS
A close association between adipose tissue (AT) and IR 
in PWS patients was reported. Lower circulating insulin 
levels and lower IR in PWS compared to obese controls 
were described in most studies, but a few exceptions 
existed. Purtell et  al. [14, 22] found no differences in 
HOMA-IR, HOMA-β, and insulin secretion rate in com-
parisons between PWS patients and abdominal fat mass-
matched obese controls. Other studies reported equally 
increased HOMA-IR and HOMA-β in PWS and obese 
controls who were matched in BMI, PBF, and total body 
and central abdominal fat mass [23]. These differences 
may be associated with the fact that in these studies the 
PWS and the control groups were matched based on 
parameters of body AT including accurate parameters of 
fat ratio distribution [18]. Owing to the special character-
istics of body AT in PWS, the body fat patterning of PWS 
may be completely different from that of simply BMI-
matched controls. If alterations in AT cause the lower 
IR in PWS, it is not surprising that these studies failed to 
find lower IR in PWS.

Table 1  Comparison of prevalence of part of obesity-associated complications between PWS patients and controls

T2DM type 2 diabetes mellitus, IGT impaired glucose tolerance, MS metabolic syndrome, NAFLD non-alcoholic fatty liver disease

References PWS patients Obese controls

N Mean age (years) T2DM/IGT (%) Other (%) N Mean age (years) T2DM/IGT (%) Other (%)

Greenswag [142] 232 23 T2DM (19%)

Tauber et al. [143] 28 T2DM (7%)

Butler et al. [144] 108 18.7 T2DM (14%)

Krochik et al. [11] 75 8.4 T2DM (0%) 395 10.7 T2DM (1.5%)

Thomson et al. [145] 30 T2DM (13.3%)

Sinnema et al. [146] 102 T2DM (17%)

Sinnema et al. [147] 12 57.8 T2DM (50%)

Grugni et al. [4] 87 26 (P50) MS (41.4%) 85 28 (P50) MS (45.9%)

Bedogni et al. [18] 20 30 NAFLD (25%) 27 33 NAFLD (59%)

Fintini et al. [10] 21 12.4 IGT (14.3%) 42 12.5 IGT (21.4%)

Fintini et al. [5] 274 20.3 T2DM (13.5%), IGT (10.2%)

Yang et al. [17] 211 T2DM (13.7%)

Damen et al. [148] 43 T2DM (5.1%)
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Table 2  Comparison of glucose metabolism between PWS patients and obese controls

References matching factors PWS patients Controls Glucose metabolism

N Mean age (years) Mean BMI (kg/m2) Mean BMI (kg/m2)

Schuster et al. [149] Age, BMI 9 11.5 35.5 35.1 During OGTT, lower fasting, 
peak, and AUC insulin in PWS; 
no differences in fasting, 
peak, and AUC glucose

Schuster et al. [149] Age, BMI 14 33 42 39 During OGTT, no differences 
in fasting glucose or insulin 
and AUC glucose or insulin

Talebizadeh and Butler [26] Age, BMI 23 22.7 36.5 38.1 Lower fasting insulin and 
higher IS in PWS; no differ-
ences in fasting glucose

Krochik et al. [11] BMI 75 8.4 30.08 30.5 Lower fasting insulin, HOMA 
β-cell and higher IS, no dif-
ferences in fasting glucose, 
120-min glucose, and insulin 
index

Crino et al. [150] Age, BMI 16 6.4 25.6 28 Lower fasting glucose, insulin 
and higher IS in PWS

Haqq et al. [13] Age, BMI-Z 14 11.35 Lower fasting insulin and 
higher IS in PWS, no differ-
ences in the insulinogenic or 
disposition indices

Park et al. [81] Age, BMI, PBF 15 11.2 24.8 (PBF 42.3) 26.3 (PBF 41.4) Lower HOMA-IR in PWS, no 
differences in WBISI and fast-
ing insulin

Brambilla et al. [3] Age, BMI 50 11 32.5 29.6 Lower fasting glucose in 
PWS, no differences in fasting 
insulin and IS

Sohn et al. [151] Age, BMI 30 7.05 19.9 21.8 Higher IS in PWS

Viardot et al. [23] Age, PBF, Abdominal fat 
mass

12 27.9 39 (PBF 49) 34.3 (PBF 43.1) No differences in fasting glu-
cose, insulin, IS and HOMA-β

Faienza et al. [152] Age, BMI 29 10.4 28.6 28.5 Lower fasting glucose, insulin 
and higher IS in PWS

Purtell et al. [22] Age, BMI, PAF 10 27.9 37.0 (PAF 46.3) 34.3 (PAF 46.3) No differences in IS and 
HOMA-β

Goldstone et al. [12] Age, BMI 42 2.72 18.1 16.7 No differences in fasting 
insulin and IS

Bedogni et al. [18] Age, PBF 20 30 39 (PBF 54) 42 (PBF 53) No differences in fasting 
and 120-min glucose, IS and 
β-cell function

Fintini et al. [10] Age, BMI 21 12.4 28.6 30.7 Lower fasting glucose, 
120-min insulin, higher IS in 
PWS, no differences in fasting 
insulin and 120-min glucose

Hirsch et al. [16] Age, BMI 22 28.7 29.2 25.7 Lower fasting glucose, insulin, 
and higher IS in PWS

Irizarry et al. [153] Age, BMI-Z 14 10.9 Lower fasting insulin and 
higher IS in PWS, no differ-
ences in fasting glucose

Lacroix et al. [25] Age, PBF, diabetic status 42 25.5 44.4 (PBF 52.2) 49.9 (PBF 50.5) Lower fasting glucose, insulin, 
and higher IS in PWS

Purtell et al. [14] Age, BMI, PAF 11 27.5 37.35 (PAF 46.53) 34.21 (PAF 46.25) No differences in IS and 
HOMA-β

Mai et al. [115] Age, BMI, PBF 30 35.7 45.5 (PBF 50.4) 46.8 (PBF 49.6) Lower fasting insulin, 
C-Peptide, higher IS in PWS, 
no differences in fasting 
glucose

Paolo et al. [154] Age, BMI 89 28.4 35.1 34.2 No differences in fasting 
insulin and IS
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Fat distribution is quite peculiar in PWS and can be 
summarized using three major characteristics. First, 
increased fat mass and decreased lean mass have been 
widely reported in PWS children and adults compared 
to BMI-matched controls [1]. In the young underweight 
PWS children, both skinfold (subscapular and tricep -) 
standard deviation scores for BMI and BMI-adjusted 
leptin levels were elevated, suggesting excess adiposity 
may begin early in PWS infants, long before the onset 
of obesity [24, 25]. It was reported that the increased 
fat/lean mass ratio persisted even if normal weight was 
achieved in PWS patients [26]. Second, PWS patients 
have relatively lower visceral adipose tissue (VAT) and 
higher subcutaneous adipose tissue (SAT) compared to 
BMI-matched controls, though with some disputes [1]. 
In one subtype of obesity named “metabolically healthy 
but obese individuals” VAT is also significantly lower 
compared to another subtype named “metabolically 
abnormal obese individuals” [27]. Third, appendicular 
fat mass is increased while trunk fat mass is decreased 
in PWS adults [1, 28]. However, data about VAT or SAT 
and appendicular or trunk fat mass are lacking in PWS 
infants, making it difficult to determine if PWS patients 
are born with these characteristics.

Characteristics of adipose tissue (AT) and IR in PWS
The relationship between AT and glucose metabolism in 
PWS remains largely unknown. According to Talebiza-
deh et al. [26], PWS subjects had larger volume and fewer 
numbers of adipocytes than non-PWS obese controls. 
Others found the measured adipocyte size was higher 
than the theoretical adipocyte size in PWS, suggesting 
a tendency for PWS to develop larger adipocytes [25]. 
However, in the general population, the presence of large 
adipocytes seems to be an indicator of a poor adipogenic 
ability of AT [29], and it may serve as a risk marker for 
developing T2DM [30]. Larger adipocytes have increased 
fat storage and decreased concentration of transporter 
distribution in each fraction, which may decrease their 
efficiency for behaving as “metabolic buffers” and thus 
may lead to IR [30]. Another possible explanation is 
that larger adipocytes cause a failure to recruit new adi-
pocytes, thus diminishing the expandability of AT and 
resulting in IR by a lipotoxic mechanism [31].

When talking about adipocyte proliferation and dif-
ferentiation, necdin, one important gene located in PWS 
region, must be discussed. By studying pre-adipocytes, 
researchers found that over-expressing necdin inhibited 

adipogenesis, whereas downregulating necdin promoted 
adipogenic differentiation [32, 33]. Treated with adipo-
genic inducers, adipose stromal-vascular cells derived 
from necdin-null mice differentiated into more adipo-
cytes than those from wild-type mice [34]. This was 
verified to some extent in vivo because necdin-null mice 
had more fat mass compared to controls, which was 
attributed to adipocyte hyperplasia [34]. In addition, 
pre-adipocyte content was lower in the stromal vascular 
fraction of AT in PWS, and adipocytes of PWS patients 
were insensitive to lipolytic stimulation [33]. Lower pre-
adipocyte content may owe to an activated adipogenic 
process, and impaired lipolytic response may lead to tri-
glycerides accumulation [33]. Thus, loss of necdin expres-
sion in the AT of PWS patients may explain the increased 
fat mass in PWS [25, 33] (Fig. 1). As downregulating nec-
din promotes adipogenic differentiation, one assumption 
is that those “relative larger adipocytes” (which need fur-
ther verification) are actually well differentiated and are 
markers of strong expandability of AT in PWS instead. 
According to the AT expandability hypothesis, ectopic 
lipid deposition occurs when individuals reach their AT 
expansion limits, which are determined by genetic and 
environmental factors [31]. However, ectopic lipid depo-
sition (e.g., fat accumulation in VAT or liver) is believed 
to aggravate IR [35]. Owing to the probably stronger 
expandability of AT, PWS subjects have relatively larger 
adipocytes and increased fat accumulation, which do not 
synchronize with IR despite severe obesity. Researchers 
once reported “metabolically healthy but obese individu-
als” had two- to three-fold higher expressions of genes 
associated with adipocyte differentiation, though the 
proportion of small adipocytes was actually lower than 
“metabolically abnormal obese individuals”, which may 
share some similarities with PWS patients [36].

Others suggest a better metabolic environment of AT 
in PWS. Many genes associated with IR are downregu-
lated in the AT of PWS subjects [25]. In AT of PWS, can-
didate genes encoding proinflammatory markers are also 
underexpressed, which is beneficial to glucose metabo-
lism [25]. These results seem to be consistent with the 
hypothetically better glucose metabolism in PWS.

Fat distribution and IR in PWS
In 2001 Goldstone et al. [37] first reported that females 
with PWS had significantly lower VAT than obese con-
trols, whereas there were no differences in BMI, total AT, 
or PBF. The authors also found that lower fasting insulin 

Table 2  (continued)
BMI body mass index, BMI-Z body mass index z-scores, PBF percent body fat, PAF percent abdominal fat, OGTT​ oral glucose tolerance test, AUC​ the areas under the 
curves, IS insulin sensitivity, HOMA-β homeostasis model assessment-insulin secretion, HOMA-IR homeostasis model assessment-insulin resistance, WBISI whole-body 
insulin sensitivity index
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levels, lower insulin/glucose ratio, and higher C-peptide/
insulin ratio were associated with VAT rather than total 
or abdominal SAT [37]. Today, quite a few studies sup-
port significantly lower VAT in PWS [1], but the corre-
lation between lower VAT and lower IR in PWS is still 
vague.

Fat accumulation in VAT is an important risk factor 
for developing IR and obesity-associated complications 
in the general population [35, 38]. VAT may have more 
fatty acid accumulation and more actively lipolytic activi-
ties than SAT [39]. Increased VAT could expose the liver 
to excessive fatty acids and glycerol via portal lipid flux, 
and then cause increased hepatic glucose and triglycer-
ide production and decreased insulin clearance, thus 
leading to hepatic IR [35, 39, 40]. The microenvironment 
of VAT also differs from that of SAT [41]. Implantation 
of adipocytes into VAT in nude mice caused increased 
IR, while surgical removal of VAT improved IS, but this 
was not the case for SAT [42]. More proinflammatory 
cytokines, such as tumor necrosis factor-α (TNF-α) and 
interleukin-6, were released by macrophages in VAT, 
thus increasing IR [42]. Twenty genes related to fat and 
glucose metabolism, including PPAR-γ and adiponec-
tin gene, were markedly different in VAT and SAT [42]. 
On the other hand, researchers have observed an impor-
tant relationship between SAT and IR in the general 

population [43–46]. Functioning as a buffer for daily lipid 
fluxes, larger SAT may help to prevent from fatty acid-
induced IR [33]. Impaired SAT may indirectly deteriorate 
IR via VAT or hepatic AT [29, 42]. Lower VAT and higher 
SAT may play a role in regulating IR in PWS.

Decreased truncal and increased appendicular fat mass 
result in a decreased truncal/peripheral fat ratio in PWS 
adults. In general obesity, pioglitazone improved IR and 
caused a lowered waist-to-hip ratio via increasing lower 
body AT without changing VAT in general obesity [47]. 
It was once reported patients with T2DM had increased 
truncal/peripheral skin folds thickness ratios compared 
to controls, while their intraperitoneal fat mass was at the 
same level [43]. Larger thigh subcutaneous fat mass may 
correlate with better glucose and fat metabolism, and the 
decreased truncal/peripheral fat ratio may contribute to 
lower IR in PWS [48, 49].

Hormones, peptides and IR in PWS
Adiponectin and IR in PWS
Some studies reported that circulating adiponectin levels 
in PWS patients were significantly higher than those in 
BMI-matched controls and lower than those in lean con-
trols [13, 50–52]. Haqq et al. [13] also detected levels of 
isoforms of adiponectin and found high molecular weight 
(HMW) adiponectin levels and found that the HMW/

Fig. 1  The hypothesized mechanism underlying the effects of loss of necdin expression on adipose tissue in PWS. Adipogenic differentiation is 
promoted, thus leading to lower pre-adipocyte and higher adipocyte content. Adipocytes of PWS patients are insensitive to lipolytic stimulation, 
leading to accumulation of triglycerides
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total adiponectin ratio was increased compared to that 
of BMI-matched controls. Compared to controls, total 
and HMW adiponectin levels were elevated in female 
Magel2-null mice, who maintained IS despite their 
increased adiposity [53]. Several studies have observed 
that adiponectin levels are negatively correlated with IR 
in PWS [13, 52]. It is likely that higher adiponectin levels 
cause lower insulin levels and lower IR in PWS.

Adiponectin may be a potential insulin enhancer. 
The ability of insulin of sub-physiological levels to sup-
press glucose production was improved by adiponectin 
administration in isolated hepatocytes [54]. Adiponec-
tin can alleviate IR in mouse models that developed it 
for high-fat feeding, leptin-receptor deficiency or agouti 
overexpression [55]. IR also was partially ameliorated in 
globular domain adiponectin transgenic (gAd Tg) ob/ob 
mice compared with ob/ob mice, though AT levels were 
actually increased in gAd Tg ob/ob mice [56, 57]. HMW 
adiponectin or the ratio of HMW to total adiponectin 
may perform a major role [13, 58]. In the general popu-
lation, a decrease in circulating adiponectin levels at 
baseline preceded a decrease in IS in a prospective study 
[59]. A Mendelian randomization study reported that 
both genetically determined and actually observed adi-
ponectin increased IS in Swedish men, a result partially 
explained by BMI and waist circumference [60].

In PWS, whether and how adiponectin affects IR 
remain largely unknown. Several studies have found 
correlations between adiponectin and fat distribution 
in PWS patients. Adiponectin was negatively correlated 
with VAT [19, 38], or tended to be inversely correlated 
with PBF or BMI in PWS [61]. Kennedy et al. [52] stated 

that adiponectin had an inverse relation to waist-to-hip 
ratio in PWS. In the general population, the expression 
level of adiponectin was higher in SAT than in VAT [39, 
46, 62]. Increased adiposity of gAd Tg ob/ob mice mainly 
was attributed to fat accumulation in SAT rather than 
in VAT or liver when compared to ob/ob mice [56, 63]. 
After administration of gAd, expressions of molecules 
involved in fatty-acid influx into the liver was down-
regulated in lipoatrophic mice [55]. Perhaps adiponectin 
affects glucose metabolism by altering fat distribution in 
PWS.

Adiponectin itself may exert important effects on glu-
cose metabolism directly or indirectly (Fig. 2). Adiponec-
tin can alter the process of tyrosine phosphorylation of 
insulin receptors in skeletal muscle [59]. By binding to 
its receptors, adiponectin regulates molecular pathways 
involving AMPK, PPAR-α, PPAR-γ and others [56, 63, 
64]. In turn, mRNA levels in WAT and circulating levels 
of adiponectin as well as IS were significantly increased 
by rosiglitazone (a PPAR-γ agonist), though more fat was 
accumulated [55]. In lipoatrophic mice whose PPAR-γ/
RXR activity was severely reduced, serum adiponec-
tin was undetectable and IR was developed, which can 
be ameliorated by administration of adiponectin [55]. 
Because PPAR-γ is crucial for glucose metabolism and 
for differentiation of adipocytes [65], relatively high adi-
ponectin levels may be associated with better glucose 
metabolism and with adipogenic differentiation in PWS.

Adiponectin may modulate IR by affecting the micro-
environment of AT or other organs. Adiponectin has the 
potential to work as a matrix-forming protein because it 
has striking structural homology to collagens VII and X 

Fig. 2  The hypothesized model of the effects of adiponectin on glucose metabolism. Adiponectin may affect PPAR-γ-dependent pathways, 
microenvironment of adipose tissue and islets of Langerhans, thus modulating glucose metabolism. But the relations and mechanisms remain 
largely unknown
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[66]. The production and action of TNF-α can be reduced 
by adiponectin [56, 66, 67]. High adiponectin levels in 
PWS may contribute to a good glucose and fat metabolic 
microenvironment, whereas low adiponectin levels in 
general obesity may be a reflection of microenvironmen-
tal dysfunction and an “unhealthy” AT expansion [63].

In addition, some studies have shown a relationship 
between adiponectin and pancreatic function. A negative 
correlation was found between adiponectin and the pro-
insulin/insulin ratio, which was a marker of β-cell failure 
in the general population [68]. Children with type 1 dia-
betes mellitus were reported to have significantly higher 
circulating adiponectin levels than controls [69]. Recep-
tors of adiponectin are markedly expressed in β-cells, and 
adiponectin has the ability to promote glucose-stimu-
lated insulin secretion and to prevent apoptosis of β-cells 
in  vitro [63]. If the pancreatic function is impaired in 
PWS, adiponectin levels may be elevated by compensa-
tory mechanisms.

Ghrelin and IR in PWS
As first reported by Cummings et  al. in 2002 [70], the 
orexigenic hormone ghrelin has received wide attention 
because it elevates remarkably in PWS patients com-
pared to obese controls or even lean controls. Some stud-
ies state hyperghrelinaemia can be observed at all ages of 
PWS, including infants [71, 72]. Elevated levels of ghrelin 
may occur before the onset of hyperphagia and obesity 
[71, 73, 74], although some disagreements exist [73, 75]. 
Cleaved from proghrelin, acyl ghrelin (AG) and desacyl 
ghrelin (DAG) coexist in the human circulatory system. 
Interestingly, some researchers noticed PWS children 
had a significantly higher AG/DAG ratio than healthy 
controls, which was comparable to obese controls [76]. 
But the high AG/DAG ratio was attributed mainly to 
high AG levels in PWS and to low DAG levels in obese 
controls [76]. However, other research studying PWS 
infants and Magel2-null mice found that they had nor-
mal AG but high DAG levels, leading to a lower AG/DAG 
ratio than controls [72, 77].

Surprisingly, researchers found a negative correlation 
between ghrelin and insulin levels and HOMA-IR in 
PWS [71, 78, 79], even in PWS infants [77]. Others found 
fasting AG and DAG levels were positively related to 
whole-body IS index [80]. The areas under the curves of 
AG were negatively related to the areas under the curves 
of insulin in PWS [81]. In PWS patients, groups without 
glucose intolerance had a significantly higher AG/DAG 
ratio than those with glucose intolerance [79]. Thus, one 
possibility is that altered ghrelin levels account for lower 
insulin levels and IR in PWS.

In the general population, a negative relationship also 
was observed between ghrelin and insulin levels and IR 

[82, 83]. However, many studies stated that ghrelin inhib-
ited insulin secretion both in humans and in animals 
and was accompanied by increased glucose levels and 
impaired glucose tolerance [15, 84–86]. Besides, higher 
IS was observed in mice deficient in ghrelin or its recep-
tors [85, 87, 88]. Other research reported ghrelin was able 
to stimulate insulin secretion [89]. It is possible that ghre-
lin affects IR differently in different conditions. Alter-
natively, AG or DAG levels, as opposed to total ghrelin 
levels, may play an important role in glucose metabolism. 
The effects of AG and DAG on glucose metabolism seem 
to be at opposite poles. Research found that AG reduced 
insulin secretion in humans or isolated islets, and a large 
dose of AG caused IR [82, 90–92]. In growth hormone 
secretagogue receptor-knockout mice, DAG regulated 
expression of genes involved in glucose and lipid metabo-
lism in AT, muscle, and liver [93]. DAG administration 
also was reported to markedly improve IR in rodents, 
healthy volunteers and patients with T2DM [91, 94–96]. 
Many studies proposed that the action of DAG depended 
at least in part on antagonizing the action of AG [82, 89, 
90, 97]. However, the effects of AG and DAG on glucose 
metabolism in PWS are still unclear. Some experiments 
suggested ghrelin can regulate the pancreas directly. Both 
AG and DAG stimulated proliferation and prevented 
apoptosis of HIT-T15 β-cells [98]. DAG can even rescue 
β-cells from streptozotocin-induced β-cell damage [85].

Some researchers found a negative correlation between 
ghrelin and BMI, BMI percentile, and VAT in PWS, sug-
gesting ghrelin may regulate AT in PWS [78, 99, 100]. 
When studying the relationship between ghrelin and IR 
in PWS, the confounding effects of fat patterning should 
be taken into consideration.

Oxytocin levels and IR in PWS
Several studies have investigated alterations of oxytocin 
(OXT) in PWS patients. Swaab et  al. [101] found that 
immunoreactivity of OXT and the number as well as the 
volume of OXT-expressing neurons were significantly 
decreased in PWS patients compared to healthy controls. 
A reduction of OXT-producing neurons was observed 
in Necdin-deficient mice [102]. In the hypothalamus of 
Magel2-null mice, the immunoreactivity of OXT seemed 
stronger than controls, but the enhanced signal was 
attributed mainly to an accumulation of OXT interme-
diate forms, whereas expressions of OXT mature forms 
were actually decreased [103]. In Magel2+m/−p mice, 
researchers observed that central OXT was decreased at 
birth and was increased in adulthood, which may owe to 
a compensatory mechanism [104]. Besides, OXT levels 
in the cerebrospinal fluid and the plasma were reported 
to be elevated in PWS patients compared to healthy 
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controls [105, 106]. The expression of OXT receptor gene 
was deficient in lymphoblasts of PWS males [107].

The association between OXT and IR is seldom stud-
ied in PWS. In the general population and in rodents, 
OXT is closely related to glucose metabolism. OXT levels 
were reduced in patients with type 1 and type 2 diabe-
tes mellitus [108]. And lower OXT levels were correlated 
to higher insulin levels, HOMA-IR and HbA1c levels in 
T2DM patients [108]. However, men with metabolic syn-
drome had higher OXT levels than those without meta-
bolic syndrome [108]. OXT administration can either 
improve or aggravate IR in humans, probably depending 
on the dose or the route of administration [108–110]. 
Oxytocin-deficient and high fat diet fed OXT receptor-
deficient (Oxtr−/−) mice to develop IR and glucose intol-
erance [109]. OXT administered via intravenous injection 
or via injection into the brain’s third ventricle improved 
IR in diabetic or prediabetic mice [109, 111]. There were 
also reports claiming a deteriorating effect of OXT on 
glucose metabolism in rodents [108, 109, 111].

OXT seems able to modulate the pancreas directly. 
OXT was detected in human and rat pancreatic extracts, 
and the levels were higher than plasma OXT levels [112]. 
In addition, central nervous system OXT receptors also 
are distributed in the pancreas, adipocytes, anterior pitu-
itary gland, vagus nerve and gastrointestinal tract [108]. 
OXT was reported to stimulate insulin secretion in islets 
or in β-cells, both in vivo and in vitro [110]. Furthermore, 
OXT has protective effects on islets by promoting prolif-
eration and by inhibiting apoptosis of β-cells [113]. The 
pancreas of streptozotocin-induced diabetic rats can be 
improved histologically and functionally by OXT admin-
istration [114]. It is possible that OXT is central to the 
functional or even to histological changes in pancreas in 
PWS patients.

Irisin and IR in PWS
Irisin is a myokine mainly derived from muscle and func-
tions in inducing the browning of white AT [115]. In 
recent years, studies have reported that irisin is corre-
lated with insulin and HOMA-IR in rodents and human 
[116–118]. Irisin intervenes in the process of apoptosis 
in the pancreatic islets [16, 119]. While Hirsch et al. [16] 
observed significantly higher levels of salivary irisin in 
PWS patients than in normal-weight controls, Mai et al. 
[115] subsequently found circulating irisin levels were 
significantly lower in PWS patients than in BMI-matched 
controls. They also observed a positive correlation 
between irisin and %FM, insulin and HOMA-IR in PWS 
[115]. This result is quite interesting because irisin is 
proved also to be an adipokine and is mainly secreted by 
SAT [120]. However, because PWS patients have lower 
muscle mass and less exercise than obese controls, both 

of which contribute to lower irisin, it is presently difficult 
to conclude whether changes of fat patterning play a role 
in regulating irisin levels in PWS [115].

Growth hormone and IR in PWS
Growth hormone (GH) is capable of stimulating insulin 
secretion and is commonly deficient in PWS patients; 
therefore, one may hypothesize that GH deficiency 
(GHD) causes the lower insulin levels in PWS [121, 122]. 
However, low insulin levels and high IS are not generally 
observed in non-PWS children with GHD, and non-PWS 
adults with GHD even develop IR [123]. In non-PWS 
GHD adults, GHD is usually secondary to other primary 
diseases [124]. However, PWS patients may be born 
with GHD. In most PWS children, impaired intrauter-
ine and postnatal growth rates are observed and GHD 
is diagnosed [1]. The possible congenital GHD in PWS 
is reminiscent of patients with isolated GHD (IGHD). 
Interestingly, IGHD patients also had low insulin levels 
and relatively low IR, though their β-cell function was 
reduced and their frequency of impaired glucose toler-
ance was increased [124, 125]. Patients with GH receptor 
deficiency also showed lower fasting insulin levels and 
lower IR than BMI-matched controls despite higher PBF 
[126]. In addition, Lit/lit mice (whose gene encoding the 
GH releasing hormone-receptor is mutated), GH knock-
out (GHKO) mice, and GH receptor knockout (GHRKO) 
mice all had decreased insulin levels, increased IS and 
impaired glucose tolerance [121, 127]. Furthermore, 
both GHKO mice and GHRKO mice preferentially 
accumulated AT in SAT regions, and GHRKO mice had 
increased adiponectin levels, which shared some similar-
ities with PWS patients [127, 128].

Noticeably in both GHKO mice and GHRKO mice, 
islet size was significantly reduced [121, 127]. Markedly 
decreased β-cell mass also was observed in GHRKO mice 
[121]. It was interesting to find defective β-cell secre-
tory function, decreased β-cell proliferation and reduced 
β-cell mass in high fat diet fed βGHRKO mice (whose 
GH receptors in β-cells were disrupted) [129]. Thus, it 
is possible that GH is critical for the development and 
functional maintenance of islets and that nonfunction-
ing GH signaling leads to impaired glucose metabolism. 
A primary defect in GH signaling may cause a primary 
defect in islets in PWS, thus leading to lower insulin lev-
els (Fig. 3).

Although GHD itself has not been studied intensively 
in PWS, GH treatment is widely applied to PWS patients 
because it significantly improves obesity and comor-
bidities [1]. However, diabetogenic effects of GH are still 
observed in PWS patients treated with GH [2, 130]. One 
possibility is that late initiation of GH treatment provides 
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no help for the irreversible defect in islets and therefore 
fails to improve glucose metabolism in PWS.

Autonomic nervous system and IR in PWS
The autonomic innervation of islets and the effects of 
autonomic activation on hormone secretion in islets both 
in humans and rodents suggest the possible alteration of 
the autonomic nervous system (ANS) may account for 
the lower insulin levels and IR in PWS [131]. Activated 
peripheral nervous system promotes glucose-stimulated 
insulin secretion and thus attenuated peripheral nerv-
ous system can lead to lowered insulin levels [131]. A 
disturbance in the ANS is hypothesized in PWS patients 
[132, 133]. Some features of PWS, such as abnormali-
ties in thermoregulation and sleep control and altered 
perception of pain indicates altered ANS. Decades ago, 
researchers found more patients with PWS had pupillary 
constriction of 2  mm or more, an abnormal 30:15 R-R 
interval ratio and changed diastolic blood pressure after 
standing compared to healthy controls [134]. Choe et al. 
[135] found a reduced gastric emptying in PWS, though 
their ghrelin levels were remarkably higher, which may be 
related to altered ANS.

ANS also may play a role in AT. Vagotomy upregu-
lated the catabolic enzyme hormone sensitive lipase and 
downregulated insulin-dependent glucose uptake as well 
as FFA take, thus aggravating IR [136]. Different ANS 
innervation in VAT and SAT indicates alterations of ANS 
may affect fat distribution [132]. A correlation between 
signs of a high ratio of sympathetic vs. parasympathetic 
reactivity and VAT was found in the general population 

[137]. In addition, ANS is associated with both ghrelin 
and oxytocin. Vagotomy elevated plasma levels of ghre-
lin and inhibited the effects of ghrelin on reducing insu-
lin secretion in rodents [78, 138]. Oxtr−/− male mice 
had lower adrenalin levels than controls, but whether 
this altered ANS activity is associated with features of 
Oxtr−/− male mice needs further research [139].

Discussions and conclusions
Many important questions remain. The jury is still out 
on whether the prevalence of T2DM or other obesity-
associated complications in PWS is lower than in general 
obesity. Further population studies are needed. It seems 
that relatively lower IR protects glucose metabolism in 
PWS, and adipose tissue, adiponectin, ghrelin, oxytocin, 
irisin, growth hormone and ANS all may play a role 
in lower insulin levels and in lower IR in PWS patients 
(summarized in Fig.  4). But the causes and underly-
ing mechanisms remain largely unknown. For example, 
do alterations of AT truly protect glucose metabolism 
in PWS? Researchers reported PWS patients had larger 
adipocytes, but the evidence is insufficient. The true 
relationships between large adipocytes and adipogenic 
potential and metabolic conditions also need further 
research. Adiponectin can affect IR in PWS patients, but 
does it behave as a causative role? Or does adiponectin 
regulate IR by altering fat distribution in PWS? Numer-
ous studies exist on the correlation between ghrelin 
and insulin secretion, but the results are controversial. 
It is unknown whether altered ghrelin levels are cor-
related with impaired pancreatic function. OXT plays 

Fig. 3  The hypothesized mechanism underlying the effects of GH on pancreatic islets. Without GH stimulation, the development and functional 
maintenance of islets are impaired. β-cell mass is reduced and destruction of β-cell is promoted. The insulin secretion function of β-cell is also 
impaired
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an essential role in glucose metabolism, but the lack of 
research about OXT and IR in PWS prevents us from 
further analyzing. Irisin may also play a role in lower 
insulin levels and in lower IR in PWS patients. Besides, 
does GHD lead to impaired development and functional 
maintenance of islets in PWS? ANS dysfunction may be 
central to the pathogenesis of PWS, but existing studies 
on this subject are very limited. Figuring out the underly-
ing mechanism requires further research.

Despite probably favorable glucose metabolism com-
pared to general obesity, PWS patients are still vulnerable 
to T2DM due to severe obesity. Thus, the regular moni-
toring of glucose homeostasis parameters is advised. 
Fasting glucose levels, hemoglobin A1c, lipid profile and 
evidence of microvascular complications and cardiovas-
cular diseases should be investigated annually to predict 
the occurrence of T2DM in PWS. If PWS patients are 
diagnosed with T2DM, management should follow gen-
eral guidelines as no systematic studies of diabetes man-
agement in PWS are available [1, 2]. The prevention of 
obesity should be the most important goal and lifestyle 
interventions including diets and exercise should be the 
first-line therapy. Dietary intake was associated with the 
gut microbiota in PWS; recently, our lab has found that 
the gut microbiota may play a role in lower insulin levels 
and in lower IR in Chinese PWS patients (unpublished 
data), consistent with the findings of Olsson et  al. [140, 
141]. Thus, intensive diet counseling may help improve 
IR and T2DM in PWS. The evidence of pharmacological 

treatment for T2DM in PWS is lacking. Case reports 
have suggested that anti-diabetic drugs including met-
formin, acarbose and exenatide are effective and safe in 
PWS [1, 2]. Thiazolidinediones, sulfonylureas and insulin 
are not always recommended owing to the treatment-
related weight gain [2]. More data on the efficacy and 
safety of the existing or potent anti-diabetic drugs for 
T2DM in PWS are in urgent need since lifestyle interven-
tions are difficult to achieve in all PWS patients especially 
during adolescence.

In conclusion, although lower insulin levels, lower IR 
and favorable glucose metabolism are widely reported in 
PWS patients, the causes are still mysterious. Altered adi-
pose tissue, elevated adiponectin levels, changed ghrelin 
and oxytocin and irisin levels, GHD and impaired ANS 
all may play a role in lower insulin levels and in lower IR 
in PWS patients. Based on existing knowledge, we can-
not determine which factor is of utmost importance and 
what are the underlying mechanisms. Further research 
is required because it can help us to better understand 
and then to improve glucose metabolism in PWS. What’s 
more, the research findings also may provide ideas and 
methods for general obesity to improve IR.
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