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Abstract 

Background:  Genetic investigations of inherited neuromuscular disorders in Africans, have been neglected. We 
aimed to summarise the published data and comment on the genetic evidence related to inherited neuropathies 
(Charcot-Marie-Tooth disease (CMT)), hereditary spastic paraplegias (HSP) and spinal muscular atrophy (SMA) in 
Africans.

Methods:  PubMed was searched for relevant articles and manual checking of references and review publications 
were performed for African-ancestry participants with relevant phenotypes and identified genetic variants. For each 
case report we extracted phenotype information, inheritance pattern, variant segregation and variant frequency in 
population controls (including up to date frequencies from the gnomAD database).

Results:  For HSP, 23 reports were found spanning the years 2000–2019 of which 19 related to North Africans, with 
high consanguinity, and six included sub-Saharan Africans. For CMT, 19 reports spanning years 2002–2021, of which 
16 related to North Africans and 3 to sub-Saharan Africans. Most genetic variants had not been previously reported. 
There were 12 reports spanning years 1999–2020 related to SMN1-SMA caused by homozygous exon 7 ± 8 deletion. 
Interestingly, the population frequency of heterozygous SMN1-exon 7 deletion mutations appeared 2 × lower in 
Africans compared to Europeans, in addition to differences in the architecture of the SMN2 locus which may impact 
SMN1-SMA prognosis.

Conclusions:  Overall, genetic data on inherited neuromuscular diseases in sub-Saharan Africa, are sparse. If African 
patients with rare neuromuscular diseases are to benefit from the expansion in genomics capabilities and therapeutic 
advancements, then it is critical to document the mutational spectrum of inherited neuromuscular disease in Africa.

Highlights:  •	 Review of genetic variants reported in hereditary spastic paraplegia in Africans
•	 Review of genetic variants reported in genetic neuropathies in Africans
•	 Review of genetic underpinnings of spinal muscular atrophies in Africans
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Introduction
Inherited neurological diseases in African populations 
have been largely neglected. Africans will be left behind 
in the global quest for targeted genetic therapies with-
out an African perspective on disease-associated muta-
tions. While modern genomic approaches have led to 
new gene discoveries in complex inherited neuromus-
cular disorders [1], the genetic landscape of neuromus-
cular disorders in Africans are barely known.

Inherited neuromuscular disorders, such as heredi-
tary spastic paraplegia (HSP) and Charcot-Marie-Tooth 
(CMT) disease are not rare in North America, Europe, 
and Asia with a global prevalence ranging between 
4.3/100,000 for HSP and 82.3/100,000 for CMT [1, 2]. 
There are no epidemiological data for Africa. Akiny-
emi et  al. reported that of the 58 African states, scat-
tered reports related to the genetics of neurological 
disorders emanated from only 17 countries and these 
were heavily concentrated in four North African coun-
tries [3]. Presently in South Africa, and with relevance 
to this review, the National Health Laboratory Service 
offers one genetic screening test for CMT (the com-
mon PMP22 gene duplication/deletion) and none for 
HSP. Although the screening test to detect the most 
common cause of Spinal Muscular Atrophy (SMA) 
(homozygous deletion/disruption of SMN1) has been 
available in South Africa for more than 2 decades, only 
isolated cases are able to access gene therapies for SMA 
which are available in resource-rich countries. There-
fore, there is an urgent need to address the disparate 
healthcare in inherited neuromuscular diseases which 
exist between the developed world and Africa. How-
ever, there are presently a few initiatives such as the 
International Centre for Genomic Medicine in Neuro-
muscular Diseases (ucl.ac.uk/genomic-medicine-neu-
romuscular- diseases/) to prioritise the advancement 
of genetic research in neuromuscular diseases, and 
the broader H3Africa Initiative to expand population 
reference data in sub-Saharan Africans [4], which will 
facilitate the analysis of pathogenic genetic variants in 
Africans with rare inherited diseases. This review will 
synthesize genetic reports from HSP, CMT and SMA 
in Africans, to give an overview of the genetic variants 

and their associated phenotypes, which have been 
reported and can be used as a reference resource for 
African researchers and clinicians. A separate review of 
inherited myopathies and muscle dystrophies in Afri-
cans, is in progress.

Methodology
PubMed was searched for journal articles related to the 
molecular genetic causes of HSP, CMT, and SMA in 
Africa. The following MeSH terms were used (heredi-
tary spastic paraplegia) or (Charcot-Marie-Tooth disease) 
or (genetic neuropathies) or (inherited neuropathies) or 
(familial amyloid neuropathies) AND (Africa), and (spi-
nal muscular atrophy) AND (Africa) for searching Pub-
Med. We performed a google search using search terms: 
“genetic neuropathies Africa”, “neuromuscular inherited 
Africa”, “hereditary spastic paraplegia Africa”, “Charcot-
Marie-Tooth disease Africa”, “spinal muscular atrophy 
or SMA and Africa”, “Kennedy’s syndrome Africa”. We 
also manually searched the reference lists of reports and 
review publications to look for additional references and 
searched for “Africa” within articles. We confined this 
review to studies with genetic descriptive components. 
Studies involving linkage analysis of a large genomic 
region or single genes where a genetic diagnosis was not 
reached were excluded as the focus of this paper was on 
the identified genetic causes of inherited neuromuscular 
disorders in Africans (European or Indian ancestries were 
excluded) (Fig.  1). Reports related to infectious disease-
associated neuropathies were excluded. Only English 
articles were reviewed which resulted in the exclusion of 
two reports from 2002 and 2008 which were published in 
French.

The data collected from the reports included: the 
genetic results of probands with African-genetic ancestry, 
phenotypic features including age at onset, inheritance 
pattern and consanguinity, and electrophysiological fea-
tures. We also noted genetic variants found in Africans 
but which had been previously reported in non-African 
families, whether there were attempts to determine seg-
regation of the putative disease-causing variant within 
the family, and whether population controls were 
assessed for the variant. Segregation of genetic variation 
was scored positive if the putative disease-causing vari-
ant was (a) excluded in at least one unaffected individual 
of the same age or older than the affected individual for 
autosomal dominant inheritance, or (b) confirmed in 
the heterozygous state in at least one unaffected parent 

•	 Assessment of pathogenic evidence for candidate variants
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for autosomal recessive inheritance. Variants in which 
functional studies had been performed were noted. In 
addition, as many of these publications were published 
prior to the establishment of large scale public genetic 
databases, we also interrogated the gnomAD database 
(last accessed 6 Sept. 2021) to determine the frequency 
of putative disease-causing variants [5]. For variant 
nomenclature we followed the Human Genetic Variation 
Sequence (HGVS)(version 20.05) guidelines [6].

Results
Most reports used the following genetic methodologies: 
Targeted PCR sequencing and/or Sanger sequencing; 
multiplex ligation-dependent probe amplification; and 
HSP or CMT gene panels. Some studies used appropriate 
microsatellite markers to construct segregating haplo-
types to establish linkage in families followed by targeted 
Sanger sequencing of coding exons. More recent reports 
(from 2013) used whole exome sequencing (WES) 
to screen protein coding variants or  performed compre-
hensive whole genome sequence (WGS) analysis.

Hereditary spastic paraplegia
Hereditary spastic paraplegias (HSP) are clinically 
characterized by a progressive gait disturbance due to 

increasing spasticity of the legs. Clinicians have recog-
nized two forms of HSP; patients who only have features 
of HSP (or pure HSP), or those with additional neuro-
logical system dysfunction such as ataxia, cognitive/
intellectual disability, extrapyramidal signs, and features 
of sensory ± motor neuropathy. The latter are called com-
plex HSP.

Although the clinical manifestations of HSP usu-
ally manifest over years rather than months, it remains 
important to exclude other non-degenerative conditions 
by performing imaging studies of the brain and spinal 
cord. Magnetic resonance imaging (MRI) of the brain 
may be normal or show atrophy, and/or may show thin-
ning of the corpus callosum and/or increased white mat-
ter signal intensities (Table 1). In Africa, infectious causes 
such as HTLV1-associated tropical spastic paraparesis is 
a concern in adults, which can be excluded with cerebro-
spinal fluid examination and/or serology [7]. Lathyrism 
caused by excessive consumption of the chickpeas of the 
lathyrism family, is endemic in Ethiopia, and can result in 
a slowly progressive paraparesis [7].

More than 88 genes have thus far been reported to 
cause HSP, which are designated as SPastic Gait/Gene 
or SPG genes [2, 8]. Inheritance patterns in HSP are pre-
dominant autosomal dominant (AD), except in areas with 

Fig. 1  Flow chart describing the methodology used for the literature curation
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high consanguinity, such as in North Africa, where auto-
somal recessive inheritance (AR) patterns are prevalent 
[2, 8, 9] (See Table 1). X-linked and mitochondrial mater-
nal inheritance patterns of HSP are rare [8]. World-wide 
SPG4 is reported to account for up to 79% of HSP cases 
with AD inheritance, albeit mainly in those with Cau-
casian ancestry [8]. Other frequent causes of AD HSP 
include the monoallelic pathogenic variants in KIF1A, as 
well as SPG3A and SPG31 [8]. Genes accounting for HSP 
cases with AR inheritance patterns include SPG11 and 
SPG7, followed by SPG15 and SPG5 in overall frequen-
cies [8]. Interestingly, three genes (KIF1C, SPG7, KIF1A) 
have been reported to associate with mixed inheritance 
patterns related to allele-dose-dependent clinical pheno-
types i.e. milder phenotypes with heterozygous variants, 
and more severe phenotypes with homozygous states [8].

HSP in North Africa
Most of the genetic reports on HSP in Africa are from 
North Africa and are based on targeted linkage analy-
sis in families to identify a candidate gene locus that 
segregated with the phenotype, followed by direct gene 
sequencing (Fig.  2). The commonest gene harbouring a 
pathogenic variant identified in HSP cases, was SPG11 
(KIAA1840) associated with thin corpus callosum on 
MRI [9] (Table  1; Additional file  1: Table A). Only four 
of the reports used WES for a more comprehensive gene 
screen in North African cases with HSP conditions, and 
one used WGS data [10–13]. The commonly encountered 

AR-HSP causal genes (SPG11, SPG15) in North African 
populations were also amongst the top seven genes in a 
large European cohort [9, 10, 14–19]. Other AR-HSP 
genes amongst North African families included SPG5, 
SPG7, SPG35, SPG46, SPG48, SPG51, and SPG57, as well 
as mutations in the ALS2 and SACS genes [9, 13, 14, 20, 
21] However, private mutations in novel genes (RNF170, 
CAPN1, KLC2, B4GALNT1, DDHD1, CCT5) were also 
reported to be disease-causing in isolated cases or fami-
lies [10–12, 21–25].

The most frequent gene variants accounting for autoso-
mal dominant inheritance patterns, were found in SPG4 
(SPAST) [26–28].

HSP in sub‑Saharan Africa
Six reports were found from sub-Saharan Africa of which 
two screened a targeted panel of 58 HSP genes [29, 30] 
and two used WES [17, 31] (Table  1; Additional file  1: 
Table A; Fig.  2). The cases from consanguineous fami-
lies from Kenya and Mali with homozygous pathogenic 
alleles were most frequent with SPG11 variants, followed 
by SPG7, SPG35 and SPG43 [32].

There were two reports on autosomal dominant HSP; 
one black South African family with a novel SPG3A vari-
ant [33] and a family from Mali with SPG10 [30]. There-
fore, the common SPG genes present in Europeans [19], 
viz. SPG3, SPG4 and SPG10, have been found in isolated 
African cases.

Genetic neuropathies
The largest group of genetic neuropathies are referred 
to as the Hereditary Sensory Motor Neuropathies or 
Charcot Marie Tooth (CMT) disease. CMT affects pre-
dominantly the motor and sensory nerves, although the 
CMT-spectrum includes rare forms with autonomic 
and motor only involvement [34]. The clinical features 
of CMT disease are progressive and symmetrical weak-
ness and wasting of distal muscles of the foot and ankle 
which may result in clumsy feet, foot deformities such 
as pes cavus, and loss of deep tendon jerks. Later, there 
may be involvement of the distal arms with wasting and 
weakness although clawing of the hands is less com-
mon. Some genetic neuropathies may have early and 
predominant upper limb involvement. Sensory involve-
ment ranges from mild distal numbness to severe loss of 
sensation with ulcers, and/or sensory ataxia. The insidi-
ous clinical progression of CMT distinguishes it from 
subacute acquired inflammatory neuropathies in most 
cases, although rare forms of CMT can give a patchy 
electrophysiological picture with conduction blocks that 
may resemble treatment-resistant chronic inflammatory 
demyelinating polyradiculoneuropathy [34]. In Southern 
African populations, where HIV-infection is prevalent, 

Fig. 2  Bubble map depicting the number of genetic reports in 
HSP- and CMT-related disorders in African countries
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small fibre painful neuropathies may be considered in 
cases with more advanced HIV-infection, and/or with 
concomitant tuberculosis and isoniazid therapies, but 
weakness is extremely rare [35]. This contrasts with CMT 
where the absence of motor involvement is unlikely [34].

In the pre-molecular era, CMT was categorized by 
the electrophysiological involvement of the sensory and 
motor nerves, whereas the CMT neuropathies are fur-
ther categorized according to their electrophysiological 
findings into three types; the demyelinating forms (nerve 
conduction velocities (NCVs) < 38  m/s in the upper 
limbs), axonal forms (NCV > 45 m/s), or the intermediate 
types of CMT (NCV in the upper limbs between 25 and 
45  m/s) [1]. All neuropathies categorized as HSMN or 
CMT, would show evidence of motor and sensory nerve 
abnormalities on electrophysiological testing, whereas 
hereditary motor neuropathy (HMN) by definition would 
have normal sensory nerve action potential responses. 
However, there appears to be genetic overlap between 
CMT2 and HMN subtypes [36].

In North America and European populations, most 
CMT neuropathies show AD inheritance compared to 
AR inheritance which comprises < 10% of cases. In con-
trast, in North Africa, where consanguinity is high [37], 
most of the cases published showed AR inheritance 
(Table 2). Similar to what is observed in HSP, CMT shows 
substantial genetic heterogeneity with > 100 genes identi-
fied which can cause genetic neuropathies [1]. The most 
common autosomal dominantly inherited CMT in North 
America and Europe, the demyelinating CMT1A caused 
by a duplication in the PMP22 gene, accounts for ~ 40% 
of genetic neuropathies [38], yet remains unreported in 
those with African genetic ancestry.

CMT in North Africa
Due to high levels of consanguinity in Algeria, Morocco, 
and Tunisia, AR-CMTB1 (LMNA) was by far the com-
monest, followed by CMT4A (GDAP1), CMT4C 
(SH3TC2), and CMT4B2 (MTMR13) [24, 39–50]
(Table 2). These are present in < 1% of AR-CMT cases in 
non-Africans [38]. Two Algerian families had compound 
heterozygous pathogenic variants with the common 
GDAP1 S194* variant [51], which has a population fre-
quency of 2.3 × 10–5 (Additional file 1: Table B). Isolated 
cases were reported with CMT4B1 and CMT4F [37].

Four Algerian families with distal HMN (dHMN5A) 
and AD inheritance patterns were reported with the rare 
[38] GARS pathogenic variants characterised by predom-
inant upper limb weakness and hand wasting [52, 53].

CMT in Sub‑Saharan Africa
Three reports were found (Fig.  2). One CMT1B (MPZ) 
Nigerian AD pedigree with late-onset demyelinating 

neuropathy [54]; and an intermediate CMT phenotype 
with conduction blocks and a novel PLEKHG5 variant 
which segregated in the family [55]. A consanguineous 
pedigree from Mali was reported with a heterozygous 
GARS variant, but without evidence of segregation or 
population screening [56]. Caution must be used in inter-
preting variants with “incomplete penetrance” to explain 
incomplete segregation of variants particularly in Afri-
cans where the population data are sparse and genetic 
variation is increased [57].

Familial amyloid neuropathies
There are three types of familial amyloid neuropathies 
(FAP) which are categorised according to the abnor-
mal precursor protein which will result in downstream 
deposition of amyloid fibrils viz. transthyretin (TTR), 
apolipoprotein A-1 and gelsolin [58]. Although some 
TTR​ mutations can cause FAP, which characteristically 
manifests with sensory and autonomic nerve dysfunc-
tion alone, a rare manifestation is oculoleptomenin-
geal amyloidosis (OLMA) which may present with 
additional features such as subarachnoid haemorrhage, 
epilepsy, hearing and visual loss, and headaches [59]. 
OLMA was described in a Nigerian adult heterozygous 
for TTR​ L21P, a variant which was previously reported 
in several European-ancestry cases [59]. Another com-
mon variant, at least among African-Americans (and 
found amongst West Africans), is the TTR​ V122I vari-
ant which was detected in the heterozygous state in 4% 
of African-Americans [60] and is associated with hyper-
trophic restrictive cardiomyopathy in older individuals, 
but without neuropathy. A man from Benin was reported 
with cognitive changes, a sensori-motor neuropathy with 
autonomic involvement and sensory ataxia, as well as 
hypertrophic cardiomyopathy, and a TTR​ I107V variant, 
which has been found in several Europeans with inher-
ited amyloidosis [61].

Spinal muscular atrophies
Classical Spinal Muscular Atrophy (SMA) due to the 
homozygous loss of exon 7 (± exon 8) of SMN1 results 
in a critical loss of protein production and progressive 
degeneration of the lower motor neurons of the spinal 
cord [62]. We will refer to this as SMN1-SMA. Clinically, 
SMN1-SMA is characterized by proximal muscle atrophy 
and weakness, and eventually distal paresis as well. The 
clinical subtypes of SMN1-SMA (types I–IV) were cat-
egorized based on the disease severity and age at onset, 
which also informed the prognosis and survival; Type I is 
most severe and manifests in early infancy, SMA II mani-
fests in late infancy to early childhood (< 18  months), 
SMA III in childhood (> 18 months)[62] and SMA IV has 
adult-onset [63].
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There is increasing recognition of SMN1-negative 
SMA, although this groups accounts for < 5% of SMA 
and is often associated with overlapping central nerv-
ous system/brainstem signs, and even cardiomyopathy 
[63]. However, in reports from Africa there are between 
25 and 65% of the clinical cohorts categorised as either 
congenital hypotonia or SMA phenotypes, which can 
be categorized as SMN1-negative SMA (absence of 
homozygous exon 7 deletion). In addition, there are 
several types of distal SMA (DSMA) which overlap with 
classifications of distal HMN/dHMN [63] (see Table 2).

The SMN2 gene is a highly homologous centromeric 
copy of SMN1 in which a C > T variant in exon 7 splic-
ing enhancer distinguishes SMN2 from SMN1 [64]. 
Although genetic variation in SMN2 does not cause dis-
ease, SMN2 copy numbers may modify disease severity 
and age at onset [65].

SMN1‑SMA in North Africa
SMN1-SMA in North African populations have been 
reported in families with and without high consanguin-
ity rates [66–75] (Additional file  2: Table C). Similar 
to European cohorts, 57/60 (95%) Tunisian cases with 
presumed SMN1-SMA showed homozygous deletion of 
SMN1 exon 7 [70], although the other samples showed 
lower proportions of SMN1-SMA particularly in older 
individuals [69].

SMN1‑SMA in sub‑Saharan Africa
Five reports on SMA in sub-Saharan Africans were 
found, mostly involving South Africans and one each 
from Congo and Mali (Additional file 2: Table C) [73–75]. 
Several cases from two regions in South Africa reported 
SMN1-SMA with homozygous loss of exon 7 (± exons 8) 
ranging between 35 and 100% of their clinical samples, 
indicating a substantial number of cases with an alterna-
tive molecular diagnosis [76–78]. An SMN1 gene dosage 
assay in 300 random black SA samples showed the het-
erozygote exon 7 deletion in 6 individuals (1/50 popu-
lation controls; 2%) which was similar to the frequency 
of SMN1 copy numbers in Kenyans and Nigerians [74], 
but roughly half of the heterozygote frequency found in 
European ancestry controls (3–4%)[77]. In comparison, 
the heterozygote frequency amongst 628 Malians was 
found to be 0.5% [74].

Humans have variable copies of an SMN2 gene, 
between 0 and 8 copies, and transcripts of this gene can 
modify the expression of SMN1-SMA [63]. Interest-
ingly, the architecture of the SMN region differs sub-
stantially between Europeans and Africans, although 
African-Americans roughly followed the same trends in 
terms of SMN2 copy numbers as Europeans and Asians 

[79]. Amongst 75 black South African SMN1-SMA 
patients, 11% had > 2 SMN2 copies compared with 37% 
(of 30) SMN1-SMA patients with European ancestry [78]. 
Taken together, these results underscore the fact that the 
genetic architecture and disease pathogenic mechanisms 
in African ancestry individuals may vary from Europe-
ans, and requires further study.

Complex inherited conditions with neuromuscular features
Although there are numerous complex multi-system 
conditions in which the presence of neuropathy may be 
present but not prominent [34], we mention two reports 
in Africans in which the recognition and initiation of 
appropriate treatment underscores their importance. 
Two families/probands with Allgrove or Triple A syn-
drome was described from North Africa/Algeria with 
the homozygous pathogenic variant in the AAAS gene 
(IVS14 + 1G > A); 1 family was consanguineous [80] and 
in the other both parents were heterozygous for the vari-
ant [81]. The main features were ACTH-resistant adrenal 
deficiency, achalasia and dry eyes, as well as features of 
distal motor neuropathy with/without spasticity, with 
the clinical onset during childhood. The importance is 
to recognise the treatable metabolic disturbances. A case 
of acute intermittent porphyria in a black South African 
man due to the HMBS R149* variant, was reported to 
mimic severe subacute motor neuropathy [82].

Conclusion
Although the high rate of consanguinity and occurrence 
of large families from North Africa have resulted in sev-
eral molecularly confirmed cases of HSP and CMT, the 
genetic studies related to identifying the pathogenic 
variants in these conditions in sub-Saharan Africans, are 
sparse (Fig.  2). The high proportion of SMN1-negative 
SMA cases in particularly sub-Saharan Africa, identi-
fies another group of patients with an as yet molecularly 
undiagnosed condition. Although the low rates of genetic 
reports in these complex disorders are likely due to the 
lack of resources and limited access to genetic screen-
ing, the clinical and genetic characteristics of these dis-
orders need to be described and identified so that the 
burden of genetic variants and disorders are curated as 
the first steps to address accessibility to potential thera-
peutic trials. Collaborations among African researchers 
are slowly gaining momentum and will strengthen future 
funding applications to extend specialist clinical training 
of clinicians and genetic councellors, as well as increasing 
the number of cases and genomics capabilities in Africa. 
Increasing neurogenomics capacity and the development 
of appropriate genetic screening panels for Africans with 
inherited neuromuscular diseases, would help improve 
diagnostic capabilities.
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