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Abstract

Background: Genetic investigations of inherited neuromuscular disorders in Africans, have been neglected. We
aimed to summarise the published data and comment on the genetic evidence related to inherited neuropathies
(Charcot-Marie-Tooth disease (CMT)), hereditary spastic paraplegias (HSP) and spinal muscular atrophy (SMA) in
Africans.

Methods: PubMed was searched for relevant articles and manual checking of references and review publications
were performed for African-ancestry participants with relevant phenotypes and identified genetic variants. For each
case report we extracted phenotype information, inheritance pattern, variant segregation and variant frequency in
population controls (including up to date frequencies from the gnomAD database).

Results: For HSP, 23 reports were found spanning the years 2000-2019 of which 19 related to North Africans, with
high consanguinity, and six included sub-Saharan Africans. For CMT, 19 reports spanning years 2002-2021, of which
16 related to North Africans and 3 to sub-Saharan Africans. Most genetic variants had not been previously reported.
There were 12 reports spanning years 1999-2020 related to SMN1-SMA caused by homozygous exon 7 & 8 deletion.
Interestingly, the population frequency of heterozygous SMNT-exon 7 deletion mutations appeared 2 x lower in
Africans compared to Europeans, in addition to differences in the architecture of the SMN2 locus which may impact
SMNT-SMA prognosis.

Conclusions: Overall, genetic data on inherited neuromuscular diseases in sub-Saharan Africa, are sparse. If African
patients with rare neuromuscular diseases are to benefit from the expansion in genomics capabilities and therapeutic
advancements, then it is critical to document the mutational spectrum of inherited neuromuscular disease in Africa.

Highlights: « Review of genetic variants reported in hereditary spastic paraplegia in Africans
+ Review of genetic variants reported in genetic neuropathies in Africans
+ Review of genetic underpinnings of spinal muscular atrophies in Africans
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+ Assessment of pathogenic evidence for candidate variants
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Introduction

Inherited neurological diseases in African populations
have been largely neglected. Africans will be left behind
in the global quest for targeted genetic therapies with-
out an African perspective on disease-associated muta-
tions. While modern genomic approaches have led to
new gene discoveries in complex inherited neuromus-
cular disorders [1], the genetic landscape of neuromus-
cular disorders in Africans are barely known.

Inherited neuromuscular disorders, such as heredi-
tary spastic paraplegia (HSP) and Charcot-Marie-Tooth
(CMT) disease are not rare in North America, Europe,
and Asia with a global prevalence ranging between
4.3/100,000 for HSP and 82.3/100,000 for CMT [1, 2].
There are no epidemiological data for Africa. Akiny-
emi et al. reported that of the 58 African states, scat-
tered reports related to the genetics of neurological
disorders emanated from only 17 countries and these
were heavily concentrated in four North African coun-
tries [3]. Presently in South Africa, and with relevance
to this review, the National Health Laboratory Service
offers one genetic screening test for CMT (the com-
mon PMP22 gene duplication/deletion) and none for
HSP. Although the screening test to detect the most
common cause of Spinal Muscular Atrophy (SMA)
(homozygous deletion/disruption of SMNI) has been
available in South Africa for more than 2 decades, only
isolated cases are able to access gene therapies for SMA
which are available in resource-rich countries. There-
fore, there is an urgent need to address the disparate
healthcare in inherited neuromuscular diseases which
exist between the developed world and Africa. How-
ever, there are presently a few initiatives such as the
International Centre for Genomic Medicine in Neuro-
muscular Diseases (ucl.ac.uk/genomic-medicine-neu-
romuscular- diseases/) to prioritise the advancement
of genetic research in neuromuscular diseases, and
the broader H3Africa Initiative to expand population
reference data in sub-Saharan Africans [4], which will
facilitate the analysis of pathogenic genetic variants in
Africans with rare inherited diseases. This review will
synthesize genetic reports from HSP, CMT and SMA
in Africans, to give an overview of the genetic variants

and their associated phenotypes, which have been
reported and can be used as a reference resource for
African researchers and clinicians. A separate review of
inherited myopathies and muscle dystrophies in Afri-
cans, is in progress.

Methodology

PubMed was searched for journal articles related to the
molecular genetic causes of HSP, CMT, and SMA in
Africa. The following MeSH terms were used (heredi-
tary spastic paraplegia) or (Charcot-Marie-Tooth disease)
or (genetic neuropathies) or (inherited neuropathies) or
(familial amyloid neuropathies) AND (Africa), and (spi-
nal muscular atrophy) AND (Africa) for searching Pub-
Med. We performed a google search using search terms:
“genetic neuropathies Africa’; “neuromuscular inherited
Africa’, “hereditary spastic paraplegia Africa’, “Charcot-
Marie-Tooth disease Africa’; “spinal muscular atrophy
or SMA and Africa’, “Kennedy’s syndrome Africa” We
also manually searched the reference lists of reports and
review publications to look for additional references and
searched for “Africa” within articles. We confined this
review to studies with genetic descriptive components.
Studies involving linkage analysis of a large genomic
region or single genes where a genetic diagnosis was not
reached were excluded as the focus of this paper was on
the identified genetic causes of inherited neuromuscular
disorders in Africans (European or Indian ancestries were
excluded) (Fig. 1). Reports related to infectious disease-
associated neuropathies were excluded. Only English
articles were reviewed which resulted in the exclusion of
two reports from 2002 and 2008 which were published in
French.

The data collected from the reports included: the
genetic results of probands with African-genetic ancestry,
phenotypic features including age at onset, inheritance
pattern and consanguinity, and electrophysiological fea-
tures. We also noted genetic variants found in Africans
but which had been previously reported in non-African
families, whether there were attempts to determine seg-
regation of the putative disease-causing variant within
the family, and whether population controls were
assessed for the variant. Segregation of genetic variation
was scored positive if the putative disease-causing vari-
ant was (a) excluded in at least one unaffected individual
of the same age or older than the affected individual for
autosomal dominant inheritance, or (b) confirmed in
the heterozygous state in at least one unaffected parent
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Google search terms PubMed search (MeSh terms)
= “genetic neuropathies Africa” = (hereditary spastic paraplegia)
=  “peuromuscular inherited Africa” = (Charcot-Marie-Tooth disease)
= “hereditary spastic paraplegia Africa” = (genetic neuropathies)
= “Charcot-Marie-Tooth disease Africa” = (inherited neuropathies) AND (Africa)
= “spinal muscular atrophy or SMA and Africa” = (familial amyloid neuropathies)
= “Kennedy’s syndrome Africa” = (spinal muscular atrophy)

Manual search of reference lists
™ ‘EAfrica,9

Studies with genetic diagnosis

Studies with genetic descriptive components

Data extracted (see methods)

Fig. 1 Flow chart describing the methodology used for the literature curation

for autosomal recessive inheritance. Variants in which
functional studies had been performed were noted. In
addition, as many of these publications were published
prior to the establishment of large scale public genetic
databases, we also interrogated the gnomAD database
(last accessed 6 Sept. 2021) to determine the frequency
of putative disease-causing variants [5]. For variant
nomenclature we followed the Human Genetic Variation
Sequence (HGVS)(version 20.05) guidelines [6].

Results

Most reports used the following genetic methodologies:
Targeted PCR sequencing and/or Sanger sequencing;
multiplex ligation-dependent probe amplification; and
HSP or CMT gene panels. Some studies used appropriate
microsatellite markers to construct segregating haplo-
types to establish linkage in families followed by targeted
Sanger sequencing of coding exons. More recent reports
(from 2013) used whole exome sequencing (WES)
to screen protein coding variants or performed compre-
hensive whole genome sequence (WGS) analysis.

Hereditary spastic paraplegia
Hereditary spastic paraplegias (HSP) are clinically
characterized by a progressive gait disturbance due to

increasing spasticity of the legs. Clinicians have recog-
nized two forms of HSP; patients who only have features
of HSP (or pure HSP), or those with additional neuro-
logical system dysfunction such as ataxia, cognitive/
intellectual disability, extrapyramidal signs, and features
of sensory £ motor neuropathy. The latter are called com-
plex HSP.

Although the clinical manifestations of HSP usu-
ally manifest over years rather than months, it remains
important to exclude other non-degenerative conditions
by performing imaging studies of the brain and spinal
cord. Magnetic resonance imaging (MRI) of the brain
may be normal or show atrophy, and/or may show thin-
ning of the corpus callosum and/or increased white mat-
ter signal intensities (Table 1). In Africa, infectious causes
such as HTLV1-associated tropical spastic paraparesis is
a concern in adults, which can be excluded with cerebro-
spinal fluid examination and/or serology [7]. Lathyrism
caused by excessive consumption of the chickpeas of the
lathyrism family, is endemic in Ethiopia, and can result in
a slowly progressive paraparesis [7].

More than 88 genes have thus far been reported to
cause HSP, which are designated as SPastic Gait/Gene
or SPG genes [2, 8]. Inheritance patterns in HSP are pre-
dominant autosomal dominant (AD), except in areas with
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high consanguinity, such as in North Africa, where auto-
somal recessive inheritance (AR) patterns are prevalent
[2, 8, 9] (See Table 1). X-linked and mitochondrial mater-
nal inheritance patterns of HSP are rare [8]. World-wide
SPG4 is reported to account for up to 79% of HSP cases
with AD inheritance, albeit mainly in those with Cau-
casian ancestry [8]. Other frequent causes of AD HSP
include the monoallelic pathogenic variants in KIFIA, as
well as SPG3A and SPG31 [8]. Genes accounting for HSP
cases with AR inheritance patterns include SPG11 and
SPG7, followed by SPG15 and SPG5 in overall frequen-
cies [8]. Interestingly, three genes (KIF1C, SPG7, KIFIA)
have been reported to associate with mixed inheritance
patterns related to allele-dose-dependent clinical pheno-
types i.e. milder phenotypes with heterozygous variants,
and more severe phenotypes with homozygous states [8].

HSP in North Africa

Most of the genetic reports on HSP in Africa are from
North Africa and are based on targeted linkage analy-
sis in families to identify a candidate gene locus that
segregated with the phenotype, followed by direct gene
sequencing (Fig. 2). The commonest gene harbouring a
pathogenic variant identified in HSP cases, was SPG11
(KIAA1840) associated with thin corpus callosum on
MRI [9] (Table 1; Additional file 1: Table A). Only four
of the reports used WES for a more comprehensive gene
screen in North African cases with HSP conditions, and
one used WGS data [10-13]. The commonly encountered

Algeria
(14) Tunisia
(10
Morocco
(14)

Egypt

Somalia

Ivory Coast M

Q)

Kenya

Nigeria
(M

(1

South Africa
4
Fig. 2 Bubble map depicting the number of genetic reports in
HSP- and CMT-related disorders in African countries
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AR-HSP causal genes (SPG11, SPGI5) in North African
populations were also amongst the top seven genes in a
large European cohort [9, 10, 14—19]. Other AR-HSP
genes amongst North African families included SPGS,
SPG7, SPG35, SPG46, SPG48, SPG51, and SPG57, as well
as mutations in the ALS2 and SACS genes [9, 13, 14, 20,
21] However, private mutations in novel genes (RNF170,
CAPN1, KLC2, B4GALNT1, DDHDI, CCT5) were also
reported to be disease-causing in isolated cases or fami-
lies [10-12, 21-25].

The most frequent gene variants accounting for autoso-
mal dominant inheritance patterns, were found in SPG4
(SPAST) [26-28].

HSP in sub-Saharan Africa

Six reports were found from sub-Saharan Africa of which
two screened a targeted panel of 58 HSP genes [29, 30]
and two used WES [17, 31] (Table 1; Additional file 1:
Table A; Fig. 2). The cases from consanguineous fami-
lies from Kenya and Mali with homozygous pathogenic
alleles were most frequent with SPG11 variants, followed
by SPG7, SPG35 and SPG43 [32].

There were two reports on autosomal dominant HSP;
one black South African family with a novel SPG3A vari-
ant [33] and a family from Mali with SPG10 [30]. There-
fore, the common SPG genes present in Europeans [19],
viz. SPG3, SPG4 and SPG10, have been found in isolated
African cases.

Genetic neuropathies

The largest group of genetic neuropathies are referred
to as the Hereditary Sensory Motor Neuropathies or
Charcot Marie Tooth (CMT) disease. CMT affects pre-
dominantly the motor and sensory nerves, although the
CMT-spectrum includes rare forms with autonomic
and motor only involvement [34]. The clinical features
of CMT disease are progressive and symmetrical weak-
ness and wasting of distal muscles of the foot and ankle
which may result in clumsy feet, foot deformities such
as pes cavus, and loss of deep tendon jerks. Later, there
may be involvement of the distal arms with wasting and
weakness although clawing of the hands is less com-
mon. Some genetic neuropathies may have early and
predominant upper limb involvement. Sensory involve-
ment ranges from mild distal numbness to severe loss of
sensation with ulcers, and/or sensory ataxia. The insidi-
ous clinical progression of CMT distinguishes it from
subacute acquired inflammatory neuropathies in most
cases, although rare forms of CMT can give a patchy
electrophysiological picture with conduction blocks that
may resemble treatment-resistant chronic inflammatory
demyelinating polyradiculoneuropathy [34]. In Southern
African populations, where HIV-infection is prevalent,
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small fibre painful neuropathies may be considered in
cases with more advanced HIV-infection, and/or with
concomitant tuberculosis and isoniazid therapies, but
weakness is extremely rare [35]. This contrasts with CMT
where the absence of motor involvement is unlikely [34].

In the pre-molecular era, CMT was categorized by
the electrophysiological involvement of the sensory and
motor nerves, whereas the CMT neuropathies are fur-
ther categorized according to their electrophysiological
findings into three types; the demyelinating forms (nerve
conduction velocities (NCVs)<38 m/s in the upper
limbs), axonal forms (NCV >45 m/s), or the intermediate
types of CMT (NCV in the upper limbs between 25 and
45 m/s) [1]. All neuropathies categorized as HSMN or
CMT, would show evidence of motor and sensory nerve
abnormalities on electrophysiological testing, whereas
hereditary motor neuropathy (HMN) by definition would
have normal sensory nerve action potential responses.
However, there appears to be genetic overlap between
CMT2 and HMN subtypes [36].

In North America and European populations, most
CMT neuropathies show AD inheritance compared to
AR inheritance which comprises <10% of cases. In con-
trast, in North Africa, where consanguinity is high [37],
most of the cases published showed AR inheritance
(Table 2). Similar to what is observed in HSP, CMT shows
substantial genetic heterogeneity with >100 genes identi-
fied which can cause genetic neuropathies [1]. The most
common autosomal dominantly inherited CMT in North
America and Europe, the demyelinating CMT1A caused
by a duplication in the PMP22 gene, accounts for ~40%
of genetic neuropathies [38], yet remains unreported in
those with African genetic ancestry.

CMT in North Africa
Due to high levels of consanguinity in Algeria, Morocco,
and Tunisia, AR-CMTB1 (LMNA) was by far the com-
monest, followed by CMT4A (GDAPI) CMTA4C
(SH3TC2), and CMT4B2 (MTMRI3) [24, 39-50]
(Table 2). These are present in <1% of AR-CMT cases in
non-Africans [38]. Two Algerian families had compound
heterozygous pathogenic variants with the common
GDAPI S194* variant [51], which has a population fre-
quency of 2.3 x 10~° (Additional file 1: Table B). Isolated
cases were reported with CMT4B1 and CMT4F [37].
Four Algerian families with distal HMN (dHMN5A)
and AD inheritance patterns were reported with the rare
[38] GARS pathogenic variants characterised by predom-
inant upper limb weakness and hand wasting [52, 53].

CMT in Sub-Saharan Africa
Three reports were found (Fig. 2). One CMT1B (MPZ)
Nigerian AD pedigree with late-onset demyelinating
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neuropathy [54]; and an intermediate CMT phenotype
with conduction blocks and a novel PLEKHGS5 variant
which segregated in the family [55]. A consanguineous
pedigree from Mali was reported with a heterozygous
GARS variant, but without evidence of segregation or
population screening [56]. Caution must be used in inter-
preting variants with “incomplete penetrance” to explain
incomplete segregation of variants particularly in Afri-
cans where the population data are sparse and genetic
variation is increased [57].

Familial amyloid neuropathies

There are three types of familial amyloid neuropathies
(FAP) which are categorised according to the abnor-
mal precursor protein which will result in downstream
deposition of amyloid fibrils viz. transthyretin (TTR),
apolipoprotein A-1 and gelsolin [58]. Although some
TTR mutations can cause FAP, which characteristically
manifests with sensory and autonomic nerve dysfunc-
tion alone, a rare manifestation is oculoleptomenin-
geal amyloidosis (OLMA) which may present with
additional features such as subarachnoid haemorrhage,
epilepsy, hearing and visual loss, and headaches [59].
OLMA was described in a Nigerian adult heterozygous
for TTR 1L21P, a variant which was previously reported
in several European-ancestry cases [59]. Another com-
mon variant, at least among African-Americans (and
found amongst West Africans), is the TTR V122l vari-
ant which was detected in the heterozygous state in 4%
of African-Americans [60] and is associated with hyper-
trophic restrictive cardiomyopathy in older individuals,
but without neuropathy. A man from Benin was reported
with cognitive changes, a sensori-motor neuropathy with
autonomic involvement and sensory ataxia, as well as
hypertrophic cardiomyopathy, and a TTR 1107V variant,
which has been found in several Europeans with inher-
ited amyloidosis [61].

Spinal muscular atrophies

Classical Spinal Muscular Atrophy (SMA) due to the
homozygous loss of exon 7 (exon 8) of SMNI results
in a critical loss of protein production and progressive
degeneration of the lower motor neurons of the spinal
cord [62]. We will refer to this as SMN1-SMA. Clinically,
SMNI-SMA is characterized by proximal muscle atrophy
and weakness, and eventually distal paresis as well. The
clinical subtypes of SMNI-SMA (types I-IV) were cat-
egorized based on the disease severity and age at onset,
which also informed the prognosis and survival; Type I is
most severe and manifests in early infancy, SMA II mani-
fests in late infancy to early childhood (<18 months),
SMA 1II in childhood (> 18 months)[62] and SMA IV has
adult-onset [63].
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There is increasing recognition of SMNI-negative
SMA, although this groups accounts for <5% of SMA
and is often associated with overlapping central nerv-
ous system/brainstem signs, and even cardiomyopathy
[63]. However, in reports from Africa there are between
25 and 65% of the clinical cohorts categorised as either
congenital hypotonia or SMA phenotypes, which can
be categorized as SMNI-negative SMA (absence of
homozygous exon 7 deletion). In addition, there are
several types of distal SMA (DSMA) which overlap with
classifications of distal HMN/dHMN [63] (see Table 2).

The SMN2 gene is a highly homologous centromeric
copy of SMNI in which a C>T variant in exon 7 splic-
ing enhancer distinguishes SMN2 from SMNI [64].
Although genetic variation in SMN2 does not cause dis-
ease, SMN2 copy numbers may modify disease severity
and age at onset [65].

SMN1-SMA in North Africa

SMNI1-SMA in North African populations have been
reported in families with and without high consanguin-
ity rates [66—75] (Additional file 2: Table C). Similar
to European cohorts, 57/60 (95%) Tunisian cases with
presumed SMNI-SMA showed homozygous deletion of
SMNI1 exon 7 [70], although the other samples showed
lower proportions of SMNI1-SMA particularly in older
individuals [69].

SMN1-SMA in sub-Saharan Africa

Five reports on SMA in sub-Saharan Africans were
found, mostly involving South Africans and one each
from Congo and Mali (Additional file 2: Table C) [73-75].
Several cases from two regions in South Africa reported
SMNI-SMA with homozygous loss of exon 7 (£ exons 8)
ranging between 35 and 100% of their clinical samples,
indicating a substantial number of cases with an alterna-
tive molecular diagnosis [76—78]. An SMN1 gene dosage
assay in 300 random black SA samples showed the het-
erozygote exon 7 deletion in 6 individuals (1/50 popu-
lation controls; 2%) which was similar to the frequency
of SMNI1 copy numbers in Kenyans and Nigerians [74],
but roughly half of the heterozygote frequency found in
European ancestry controls (3—4%)[77]. In comparison,
the heterozygote frequency amongst 628 Malians was
found to be 0.5% [74].

Humans have variable copies of an SMN2 gene,
between 0 and 8 copies, and transcripts of this gene can
modify the expression of SMNI-SMA [63]. Interest-
ingly, the architecture of the SMN region differs sub-
stantially between Europeans and Africans, although
African-Americans roughly followed the same trends in
terms of SMN2 copy numbers as Europeans and Asians
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[79]. Amongst 75 black South African SMNI-SMA
patients, 11% had >2 SMN2 copies compared with 37%
(of 30) SMN1-SMA patients with European ancestry [78].
Taken together, these results underscore the fact that the
genetic architecture and disease pathogenic mechanisms
in African ancestry individuals may vary from Europe-
ans, and requires further study.

Complex inherited conditions with neuromuscular features
Although there are numerous complex multi-system
conditions in which the presence of neuropathy may be
present but not prominent [34], we mention two reports
in Africans in which the recognition and initiation of
appropriate treatment underscores their importance.
Two families/probands with Allgrove or Triple A syn-
drome was described from North Africa/Algeria with
the homozygous pathogenic variant in the AAAS gene
(IVS14+41G>A); 1 family was consanguineous [80] and
in the other both parents were heterozygous for the vari-
ant [81]. The main features were ACTH-resistant adrenal
deficiency, achalasia and dry eyes, as well as features of
distal motor neuropathy with/without spasticity, with
the clinical onset during childhood. The importance is
to recognise the treatable metabolic disturbances. A case
of acute intermittent porphyria in a black South African
man due to the HMBS R149* variant, was reported to
mimic severe subacute motor neuropathy [82].

Conclusion

Although the high rate of consanguinity and occurrence
of large families from North Africa have resulted in sev-
eral molecularly confirmed cases of HSP and CMT, the
genetic studies related to identifying the pathogenic
variants in these conditions in sub-Saharan Africans, are
sparse (Fig. 2). The high proportion of SMNI-negative
SMA cases in particularly sub-Saharan Africa, identi-
fies another group of patients with an as yet molecularly
undiagnosed condition. Although the low rates of genetic
reports in these complex disorders are likely due to the
lack of resources and limited access to genetic screen-
ing, the clinical and genetic characteristics of these dis-
orders need to be described and identified so that the
burden of genetic variants and disorders are curated as
the first steps to address accessibility to potential thera-
peutic trials. Collaborations among African researchers
are slowly gaining momentum and will strengthen future
funding applications to extend specialist clinical training
of clinicians and genetic councellors, as well as increasing
the number of cases and genomics capabilities in Africa.
Increasing neurogenomics capacity and the development
of appropriate genetic screening panels for Africans with
inherited neuromuscular diseases, would help improve
diagnostic capabilities.
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