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Abstract 

Background: Calcium ions are involved in several human cellular processes including corticogenesis, transcription, 
and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability 
(ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in 
the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce 
ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms 
underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in 
patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, 
ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before 
March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium 
channel, GDD and calcium channel, developmental delay and calcium channel.

Main body: A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. 
Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, 
CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited 
gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants 
as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with 
more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in 
DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mecha-
nisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative 
effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified 
only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of 
studies on treatment options for ID/GDD both in vivo and in vitro.

Conclusion: Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants 
are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.

Keywords: Intellectual disability, Global developmental delay, Epilepsy, Calcium channelopathies, Genes, Variants, 
Cerebellar atrophy, Review
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Introduction
Intellectual disability (ID) is characterized by limitations 
in both intellectual functioning and adaptive behaviour, 
which manifests before the age of 18 [1]. Global develop-
mental delay (GDD) is defined as a profound delay of ≥ 2 
standard deviations below the mean in ≥ 2 developmen-
tal domains [2]. GDD and ID represent clinically defined 
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and recognized symptoms that are related but not nec-
essarily synonymous. GDD is used for the children aged 
below 5 years while ID is for those aged 5 years and above 
[3]. Two-third of the children meriting the diagnosis of 
GDD in the preschool years, when reassessed later at 
school age, they continue to meet the diagnostic criteria 
for ID [4, 5]. Moreover, many older children diagnosed 
with ID currently, were initially diagnosed with GDD. 
Therefore, these entities have common features and both 
represent defects or disorders in learning [6]. Hence, they 
have a common approach in terms of evaluation and 
understanding of their etiology. The prevalence of ID/
GDD world-wide is 10.37/1000 population according to 
meta-analysis [7]. It can occur in isolation or in combina-
tion with other neurological conditions such as epilepsy, 
autism spectrum disorders, attention deficit hyperactiv-
ity disorder, sensory impairment or congenital malforma-
tions. This condition incurs huge cost for the provision of 
adequate services in the society, and it is associated with 
stigma, mental and physical complications [7]. Notably, 
30% of the cases with ID/GDD have comorbid mental 
health problems [5]. Neuropsychological tests are used 
to diagnose ID/GDD, however, the diagnosis is often ini-
tially formulated based on clinical judgment rather than 
on formal standardized assessments especially for the 
young patients [6] because those tests are limited by the 
age.

Approximately 65% of the cases with moderate-to-
severe ID/GDD have genetic etiologies such as chromo-
some structural abnormalities, chromosome aneusomies, 
genomic disorders, and monogenic diseases [8–11]. With 
the introduction of next generation sequencing technolo-
gies, new ID/GDD genes are now being identified rapidly 
of which unpin the pathophysiology and provide new tar-
gets for treatment. Up to the present time, 450 genes have 
been implicated in ID/GDD; 400 genes for syndromic ID/
GDD and 50 genes for non-syndromic ID [12]. Some of 
these genes participate in calcium signaling pathway. 
Prenatally, calcium-facilitated depolarization regulates 
neural proliferation, migration, and differentiation dur-
ing the formation of the cerebral cortex [13]. Postnatally, 
calcium ions modulate cellular excitability by modelling 
synapses and sensory neural circuits [13]. Calcium ions 
also contribute to the membrane potential and function 
as an important signalling molecule [14]. Several pro-
cesses in humans, including mitochondrial functions [15, 
16], transcription, release of neurotransmitters, neurite 
outgrowth, and activation of some enzymes [14] depend 
on calcium ions. Noteworthy, mitochondria play a major 
role in regulating calcium-signalling processes [15, 16]. 
Besides, ATP is important for regulation of membrane 
excitability, synaptic transmission, transcription, and 
apoptosis [15].

Voltage-gated calcium channels belong to the family of 
4-domain ion channels. Ten genes encode voltage-gated 
calcium channels. Each is categorized into one of two 
major groups: high voltage activated (HVA; R-, P/Q-, N- 
and L-types), and low voltage activated (LVA; T-type) [14, 
17]. The HVA calcium channels are heteromultimeric 
protein complexes consisting of the pore-forming Cavα1, 
Cavδ, Cavβ and Cavα2δ subunits [14, 17]. By contrast, 
low voltage-activated calcium channels are comprised 
of only the Cavα1. Cav1, Cav2, and Cav3 are subfamilies 
[14, 17]. All Cavα1 subunits have four major transmem-
brane domains, and each consist of six membrane-span-
ning helices (termed S1–S6) [14]. Calcium ions enter into 
the cell when the channel is open and the opposite hap-
pens when it is closed. The movement of calcium ions in 
and out of the cell is regulated by calcium- and voltage-
dependent inactivation of calcium ion channels [14]. S4 
segment is positively charged, thus responsible for con-
trolling voltage-dependent activation. The loop between 
S5 and S6 consists of negatively charged residues (glu-
tamate or aspartate) that form the selectivity filter [14]. 
Large cytoplasmic linker connects the chief membrane 
domains regions and are within cytoplasmic N and C 
termini. Noteworthy, these cytoplasmic domain regions 
are important for modulating channel function via sec-
ond messenger and protein–protein interaction [14, 17]. 
The most common type of mutations in this voltage-
gated calcium channels is missense followed by deletion 
(according to this review). Consequently, mutations in 
S4 domain between S5 and S6, and in cytoplasmic linker 
that connects the chief membrane domains can alter the 
ability of the channels to regulate calcium influx/efflux. 
Overall, mutations in calcium channels can; (1) decrease 
channel function (loss-of function) or expression, (2) 
increase channel function (gain-of function) or expres-
sion, and (3) produce a disease without altering the elec-
trophysiological properties of the channels [14]. Table 1 
summarizes the general information related to the chan-
nels including the name of the gene, type of the cur-
rent produced, neuronal localization, distribution, and 
pharmacology.

Calcium channelopathies are associated with sev-
eral neurological disorders including ID/GDD, epilepsy, 
migraine, and ataxia [14]. Our hypothesis was that loss-
of-function mutations are expected to induce ID/GDD, 
gain-of-function mutations are expected to enhance 
learning and memory. Similarly, gain-of-function and 
not loss-of-function mutations are expected to cause epi-
lepsy. Surprisingly, studies showed that both gain- and 
loss-of-function mutations in genes encoding calcium 
channels could lead to epilepsy [18–23]. These mutations 
can dysregulate intrinsic gating processes and cell signal-
ling pathways, which are involved in regulating channel 
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activity and calcium trafficking through the plasma 
membrane [24]. As a result, these mutations can impair 
mitochondrial function, neurotransmitter release, and 
synaptic plasticity.

Our recent review revealed that potassium channelo-
pathies contribute largely to the development of ID/
GDD, and both gain- and loss-of-function variants were 
involved [25]. We observed that potassium channelopa-
thies play an important role in the development of ID/
GDD [25]. However, the role of calcium channelopathies 
in ID/GDD is unknown. Besides, it is unclear whether 
both gain- and loss-of-function mutations in calcium 
channel genes can lead to ID/GDD, and what are the pos-
sible underlying mechanisms.

Approximately 30% (range, 2–80%) of the cases with 
ID/GDD have nonspecific brain abnormalities accord-
ing to magnetic resonance imaging (MRI), and com-
puted tomography [26]. Nevertheless, the contribution 
of neuroimaging studies in understanding the underly-
ing etiology of this condition range from 0.2 to 2.2% only 
[27]. Noteworthy, for some genes, brain changes are age-
dependent, therefore, normal conventional MRI can be 
found at an early age [28], however, with an increase of 
age, malformations can be noticed [29, 30]. Cases with 
normal conventional MRI can have concealed malforma-
tions, which can be detected by advanced brain imaging 
methods. For instance, functional MRI (fMRI) can detect 
brain abnormalities that conventional MRI cannot spot 
in temporal lobe epilepsy and autism [31, 32]. Similarly, 
proton magnetic resonance spectroscopy (H-MRS) can 
detect abnormalities in cases diagnosed with neurono-
pathic Gaucher’s disease (NGD) [33]. Thanks to the 
advanced technology, the fMRI and H-MRS can also 
predict the severity of the disease even at an early age 
of which might be correlated with genotypes. Razek AA 
et al. revealed in their study that in children with NGD, 
there is a correlation between choline/creatine ratio and 
modified disease severity scoring system and genotypes 
[33]. Although abnormal standardized neuropsychologi-
cal tests are enough to establish the diagnosis of ID/GDD, 
those tests can be affected by patient age. Fortunately, 
some neuroimaging studies can overcome the age limi-
tation; alteration of metabolites revealed by H-MRS and 
diffusion-weighted magnetic resonance imaging (DWI) 
can foretell the severity of the cognitive dysfunction. In 
one study, neuropsychological test results correlated with 
apparent diffusion coefficient value and metabolic change 
for the children diagnosed with minimal hepatic enceph-
alopathy with liver cirrhosis signifying that altered meta-
bolic changes and cerebral edema were responsible for 
cognitive changes [34]. Whether there is a link between 
mutations in calcium channel genes, brain malforma-
tions, metabolic changes, and ID/GDD is yet to be found. 

Early detection of metabolic and other brain changes can 
aid in prevention of further cognitive decline.

Based on the important roles of calcium ions in the 
development of the neural cortex and signalling pro-
cesses, we hypothesised that calcium channelopathies 
might contribute to the development of ID/GDD. To 
prove this, we listed all calcium channel gene vari-
ants previously reported in association with ID/GDD. 
Each mutation was considered in context of the associ-
ated degree of severity, current knowledge about pos-
sible mechanisms (gain- or loss-of-function), relevant 
advancements in animal models, treatments, and existing 
gaps in knowledge. We further aimed to investigate mor-
phological brain anomalies associated with ID/GDD in 
patients with calcium channelopathies. We also discuss 
the possible relationship between calcium channelopa-
thies, mitochondria dysfunction, epileptic discharges, 
cerebellar morphological changes, and ID/GDD. This 
review will help future studies on the mechanisms of ID/
GDD to develop novel treatment strategies for this con-
dition. Although previous narrative reviews summarised 
the relationship between calcium channelopathies and 
epilepsy as well as autism spectrum disorder [17, 35–37] 
to the best of our knowledge, this is the first systematic 
review to explore the relationship between calcium chan-
nelopathies and ID/GDD.

Methods
Literature search and selection
The review was conducted according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Anal-
yses statement [38]. An extensive literature search was 
conducted in PubMed, Embase, ClinVar, LOVD, OMIM, 
ClinGen, Gene Reviews and DECIPHER databases to 
find any relevant study/record published for all years 
until March 2021. The following search strategies were 
employed: ID and calcium channel, mental retardation 
and calcium channel, global developmental delay (GDD) 
and calcium channel, developmental delay (DD) and cal-
cium channel (Additional file  1). The search strategies 
were created in consultation with a librarian and were 
used by three independent reviewers to select papers that 
met our review objectives.

This review included several kinds of clinical and epi-
demiological studies such as cohorts, case-controls, 
cross-sectionals, case series, and case reports. We 
selected studies that included cases with ID/GDD and 
calcium-channel gene variants. We excluded papers 
involving cases of ID/GDD with other types of chan-
nelopathies (sodium, potassium, and chloride) or other 
gene variants. Moreover, we did not include studies that 
documented patients with calcium channelopathies but 
no information related to ID/GDD. Lastly, we excluded 
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all non-English papers, abstracts, reviews, patents, book 
chapters, and conference papers. The reference lists of 
retrieved studies were hand-searched to identify addi-
tional relevant reports.

Data extraction
Two independent reviewers screened the titles and 
abstracts of candidate papers and subsequently read the 
entire content of those that apparently met our inclusion 
criteria. The accuracy of the retrieved information was 
determined through discussion and consensus among 
the authors. We collected from articles that met inclu-
sion criteria information related to calcium channel gene 
variants, phenotype associated with ID/GDD, degree of 
ID (mild, moderate,  severe, and profound), electrophysi-
ological results (gain- or loss-of-function), brain MRI 
results if reported, and the corresponding references. All 
identified candidate genes were further researched using 
the OMIM, ClinVar, Embase, LOVD, and PubMed data-
bases to determine their function, expression profile, any 
related information gleaned from animal and functional 
cell studies, available treatments, and how they could 
contribute to possible mechanisms underlying ID/GDD.

Results
Five thousand eight hundred and seventy  articles were 
retrieved from the initial search. Fifty-nine full-text 
articles met our inclusion criteria after we excluded 
non-English papers, abstracts, reviews, patents, book 
chapters, conference papers, and irrelevant papers on 
other channelopathies (Fig.  1). Thus, we identified 159 
cases documented in 59 papers. Epilepsy was reported in 
51.6% (82/159) of the cases. Ten calcium channelopathies 
related to ID/GDD were identified involving the follow-
ing genes: CACNA1A [18, 19, 39–66], CACNA1C [67–
73], CACNA1I [74], CACNA1H [75, 76], CACNA2D2 
[77–80], CACNA2D1 [20, 81], CACNA1D [21, 22, 82–
84], CACNA1E [85], CACNA1F [86], and CACNA1G [23, 
87]. The underlying mechanisms included gain- and/ or 
loss-of-function, alteration in kinetics (activation, inacti-
vation) and dominant-negative effects of truncated forms 
of alpha1 subunits.

The most common affected calcium genes were CAC-
NA1A, CACNA1E, CACNA1C and CACNA1D. Most 
variants exhibited gain-of-function effect. Severe to pro-
found ID/GDD was observed more for the cases with 
gain-of-function variants as compared to those with loss-
of-function variants. CACNA1E, CACNA1G, CACNA1F, 
CACNA2D2 and CACNA1A associated with more severe 
phenotype (Additional file 2: Table S1). Figures 2, 3, 4, 5, 
6, 7 and 8 summarize the effects of genetic aberrations. 
The S4 transmembrane segment of domain III was the 
hotspot for CACNA1A-related ID/GDD (Fig. 2), domain 

I/domain II intracellular interlinker for CACNA1C 
(Fig.  3), S6 transmembrane segment of domain II for 
CACNA1E (Fig. 5), and the domain I/domain II intracel-
lular interlinker for CACNA1D (Fig. 4). The detailed gen-
otype–phenotype list can be found in Additional file 3.

Moreover, 157 copy number variations (CNVs) span-
ning calcium genes were identified in DECIPHER data-
base but it was difficult to include them here due to 
consent issues. The leading CNVs were those encompass-
ing CACNA1C, CACNA1A, CACNA1E, CACNA1F and 
CACNA1G. More details can be found in DECIPHER 
database (decipher@sanger.ac.uk).

Cerebellar atrophy was reported in 25% (40) of the 
identified cases, cortical atrophy in 8.8% (14), optic 
atrophy in 1.3% (2), white matter changes in 5% (8), and 
other anomalies of the central nervous system in 5% 
(8). Normal brain magnetic resonance imaging find-
ings accounted for 24.5% (39) of the identified cases and 
34.6% (55) of the cases had no information related to 
brain imaging results. Two cases with gain-of-function 
variants who underwent muscle biopsy showed mito-
chondrial dysfunction: decreased mitochondrial complex 
I and III activity for the case with CACNA1C variant and 
partial deficits in complexes II and III for the case car-
rying CACNA1A variant (Additional file  2: Table  S1). 
There is scarcity of cell and animal models for ID/GDD. 
Several modulators and pathways have been proposed for 
other calcium channel-related conditions. The common-
est involved pathway is apoptotic followed by autophagic 
(Table 2, 3).

Discussion
Overall, this condition seems to be progressive, how-
ever, most primary authors provided less information 
on the course of the disease. Many of the reported cases 
with electrophysiological studies had gain-of- function 
variants. Severe to profound ID/GDD was more pre-
dominant for the cases with gain-of-function variants 
as compared to those with loss-of-function. CACNA1E, 
CACNA1G, CACNA1F, CACNA2D2 and CACNA1A 
associated with more severe phenotype. The possible 
reasons as why these genes associated with more severe 
phenotype include (1) the neuronal location of the genes; 
all of them are located in the pre-synaptic membrane, (2) 
brain distribution; most of them are distributed in the 
brain cortex and/or hippocampus and/or cerebellum, (3) 
function of the genes; they all regulate the release of neu-
rotransmitter, and (4) the effect of the variants; most of 
the reported variants in these genes had gain-of-function 
property. This review has also revealed some hotspots for 
future research.
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Summary of the clinical features
Calcium channels are widely spread in the human body 
(Table 1). Therefore, on top of brain, other organs such as 
eyes, heart, skeletal muscles, endocrine, and kidney can 
be affected too. In addition to ID/GDD, most cases with 
CACNA1A variants present with ataxia, epilepsy, atten-
tion deficit hyperactive disorder, autism spectrum disor-
der, dysmorphic features and eye abnormalities such as 
nystagmus, paroxysmal tonic upgaze, dysmetric saccades, 
blindness, myoclonus, ocular apraxia, exophthalmos and 

bilateral esotropia. Schizophrenia, anxiety, depression, 
hemiplegic migraine, coma, conductive deafness, ver-
tigo attacks, dysarthria, tremors, athetosis, optic nerve 
glioma, abnormal behaviors such as aggression, sleeping 
problems can also be noticed. Cases carrying CACNA1C 
variants mostly present with Timothy syndrome, which is 
characterized by ID/GDD, autism, facial abnormalities, 
heart conditions such as atrioventricular block and patent 
ductus arteriosus, syndactyly and hypoglycemia. How-
ever, some cases can present with only ID/GDD, epilepsy, 

Records identified through PubMed, 
Embase, ClinVar and LOVD 

(n = 5870)

Sc
re
en
in
g

In
cl
ud

ed
El
ig
ib
ili
ty

Id
en
tif
ic
at
io
n

Additional records identified 
through other sources 

(n =0)

Records after duplicates removed 
(n = 3300) 

Records screened 
(n =3300) 

Records excluded 
(n = 3211) 

Full-text articles assessed 
for eligibility 

(n =89)

Full-text articles excluded, 
with reasons 

(n =30)

Studies included in 
qualitative synthesis 

(n = 59)

Studies included in 
quantitative synthesis 

(meta-analysis)
(n = 59) 

Fig. 1 A summary of the steps used for the literature selection
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Fig. 2 Effects and locations of genetic aberrations for CACNA1A. There is a cluster of four critical residues in S4 transmembrane segment of domain 
III. Round yellow dots represent gain-of- function variants. Triangular yellow dots represent loss-of-function variants

Fig. 3 Location of the identified CACNA1C amino acid substitutions. There is a cluster of four critical residues in the DI/D II intracellular interlinker. 
Round yellow dots represent gain-of- function variants
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Fig. 4 Location of the identified CACNA1D amino acid substitutions. There is a cluster of three critical residues in the domain I/domain II intracellular 
interlinker. Round yellow dots represent gain-of- function variants

Fig. 5 Location of the identified CACNA1E amino acid substitutions. There is a cluster of five critical residues important for gating in S6 
transmembrane segment of domain II. Round yellow dots represent gain-of- function variants
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attention deficit hyperactive disorder plus congenital car-
diac anomalies and dysmorphic features without autism. 
Cases with CACNA1E variants mostly present with 

profound ID/GDD accompanied with spastic dystonic 
quadriplegia, hypotonia, macrocephaly, and dystonia. ID/
GDD, epilepsy, ataxia, and motor impairment, hypotonia, 

Fig. 6 Location of the identified CACNA1G amino acid substitutions. Round yellow dots represent gain-of- function variants

Fig. 7 Location of the identified CACNA1H amino acid substitutions. Round yellow dots represent gain-of- function variants
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oculomotor apraxia, hyperopia, strabismus and multiple 
congenital anomalies can be seen for the cases carrying 
CACNA1G variants. Besides ID/GDD, epilepsy, autism, 
spastic quadriplegia, cortical blindness, lebers congenital 
amaurosis, klinefelters and retinitis pigmentosa, congeni-
tal nystagmus, rod cone dystrophy and myopia can be 
observed in those carrying CACNA1F mutations.

Cortical blindness, severe proximal muscular hypoto-
nia, distal muscular hypertonia, epilepsy and ID/GDD 
can be noticed for the cases carrying CACNA1I vari-
ants. ID/GDD and ventral septal defect are the major 
clinical features for the cases with CACNA1H muta-
tions. Dyskinesia such as choreiform movements, erratic 
limb movements, tremor, restlessness, sleep disturbance, 
dysmorphic features, oculo-motor apraxia, strabismus, 
nystagmus, axial and leg hypertonia, head tonic exten-
sion, brisk symmetric reflexes, hyperglycemia, glycosu-
ria, and epilepsy are additional clinical features that can 
be observed for the cases with ID/GDD and yet carry-
ing CACNA2D2 variants. Whereas, for the CACNA2D1 
variants, epilepsy, autism, attention deficit hyperactive 
disorder, ataxia, facial dysmorphism, clinodactyly, bra-
chymetacarpy, abnormal skin, short stature, transient 
diabetes with hyperinsulinemia, hearing impairment, 
aggressiveness, agitation, stereotypic hand movements, 
primary aldosteronism, heart defects and hypotonia can 
be seen in additional to ID/GDD.

Brain malformations including cerebellar, cortical and 
optic nerve atrophy were common in all ID-related cal-
cium channelopathies. For two cases with gain-of-func-
tions variants and underwent muscle biopsy showed 
evidence of mitochondrial dysfunction.

The pathomechanisms
In normal physiological conditions, calcium ions 
enter neurons via calcium channels (Cav1, Cav2 and 
Cav3). Most of the calcium ions enter mitochondria 
for ATP synthesis, which is crucial for synaptic plastic-
ity. The remaining calcium ions in the cytosol stimulate 

transcription, facilitate release of neurotransmitters, 
promote neurite outgrowth, and activate some enzymes, 
which are important for synaptic plasticity.

Calcium effects on synapses
The calcium channel Cav1.2, which is encoded by CAC-
NA1C, regulates gene expression by activating the cyclic 
adenosine monophosphate (cAMP) response element-
binding protein (CREB) and brain-derived neurotrophic 
factor (BDNF), both of which are essential for long-
term potentiation [88, 89]. The increased expression 
of Cavα2δ subunit encoded by CACNA2D1 facilitates 
synapses to make more efficient use of calcium influx to 
activate neurotransmitter release [90]. In addition, this 
subunit interacts with big potassium (BK) channels and 
N-methyl-D-aspartate receptors (NMDARs) [91]. Cav2 
channels including Cav2.1 and Cav2.3 encoded by CAC-
NA1A and CACNA1E genes, respectively, form large 
signalling complexes in the presynaptic nerve terminal, 
which regulate the calcium entry and in turn facilitate 
neurotransmitter release and short-term plasticity [92, 
93]. There are more than 100 proteins, which interact 
with Cav2.1 and Cav2.2 channels in presynaptic termi-
nals and are involved in the release of neurotransmitters 
[92]. Cav1 channels including Cav1.2, Cav1.3, and Cav1.4 
encoded by CACNA1C, CACNA1D, and CACNA1F, 
respectively, form signalling complexes in postsynaptic 
dendrites as well as dendritic spines, in which calcium 
entry induces long-term plasticity [92]. Cav3.1 channel 
that is encoded by CACNA1G is responsible for post-
synaptic calcium signaling too and thus contribute to 
long-term potentiation [94, 95]. They may enhance den-
dritic depolarization or, on the other hand, can stimu-
late calcium-activated potassium currents, resulting in 
membrane hyperpolarizations [96]. The co-activation of 
Cav3.3 and GluN2B-containing NMDA receptors medi-
ates long-term potentiation at thalamoreticular inputs 
[97].

Fig. 8 Location of the identified CACNA2D2 amino acid substitutions. Triangular yellow dots represent loss-of-function variants
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Cav2.1 current facilitates short term synaptic plasticity 
through activation of neuronal calcium sensor proteins 
(CaS) [92, 98]. It is hypothesised that short-term plasticity 
is regulated by the SNARE complex that acts as the effec-
tor of synaptic vesicle exocytosis [99]. SNARE complex is 
comprised of SNAP-25, syntaxin, and synaptobrevin, also 
known as VAMP [100]. These proteins interact with the 
synaptic protein interaction (synprint) site present on the 
Cav2.1 calcium channels [101]. In addition, synaptotag-
min 1 and 7 (calcium sensor protein), which regulates 
SNARE function has been implicated in short-term syn-
aptic plasticity [102–104]. Cav3.2 current are responsible 
for retrieval of memory [105], and plays a major role in 
short-term plasticity [106]. Mutations in the identified 
calcium genes related to ID/GDD can affect neurotrans-
mitter release [107–111].

Calcium effects on learning and long‑term potentiation
Long-term potentiation occurs in two phases. Phase 
1 includes increase in the expression of alpha-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 
(AMPAR) while phase 2 involves activation of transcrip-
tion and protein synthesis (formation of more AMPARs 
and dendrites for new synapse formation via secretion of 
growth factors) [112]. Glutamate released from the pre-
synaptic membrane binds to the AMPARs and NMDARs, 
which are present on the postsynaptic membrane [112]. 
The binding of glutamate to AMPARs allows sodium ions 
influx leading to membrane depolarization [112]. When 
the membrane is depolarized, the magnesium blockage 
in NMDARs is removed, thereby, allowing the calcium 
ions to enter into the cell [112]. Calcium influx through 
NMDARs leads to calmodulin-dependent activation of 
 Ca2+/calmodulin-dependent protein kinase (CaMKII)
[112] and Kv4.2 internalization [113]. The activation of 
CaMKII leads to a rapid surge in the number of AMPARs 
at synapses [112]. In addition, CaMKII phosphorylates 
major and auxiliary subunits of AMPARs [114] includ-
ing serine 831, the carboxyl-terminal of GluA1 [115] 
stargazin, and transmembrane AMPAR regulatory pro-
teins (TARPs) [116]. CaMKII also plays a role in expand-
ing and consolidating the synapse [114]. The CaMKII/
NMDAR complex acts like a switch that regulates synap-
tic strength [117, 118]. Synaptic plasticity is chiefly facili-
tated by variations in the number of synaptic AMPARs, 
which are regulated by auxiliary subunits (stargazin and 
TARPs) that control channel gating and AMPAR traffick-
ing [116]. Stargazin controls both AMPAR function and 
calcium channels [116, 119] and its dysfunction affects 
long-term potentiation [120].

Cav1 channels form signalling complexes in postsynap-
tic dendrites as well as in dendritic spines, in which cal-
cium influx induces long-term potentiation [92]. CaMKII 

plays a role in activating the calcium-regulated protein 
kinase (CaMKIV), which in turn activates the transcrip-
tion factor CREB [121]. The influx of calcium via Cav1.2 
channels leads to transcription, translation, and con-
sequently protein synthesis [122] leading to memory 
stabilisation [123]. Protein synthesis is very crucial for 
long-term memory as its inhibitors such as anisomycin, 
puromycin, acetoxycycloheximide, and cycloheximide 
were shown to affect long term potential and not initial 
attainment of task [124]. Beta-2 adrenergic receptors 
interact with Cav1.2 channels to control the long-term 
postsynaptic plasticity and the activity of the calcium 
channel [125, 126]. The Cav3.3 interacts with GluN2B-
containing NMDA receptors to induce long-term poten-
tiation [97].

Calcium channels and mitochondria
In this study, we found the underlying mechanisms for 
the reported variants included gain- and/ or loss-of-func-
tion, alteration in kinetics (activation, inactivation) and 
dominant-negative effects of truncated forms of alpha1 
subunits. The contribution of gain- and loss-of-function 
variants to ID might be attributed to the mitochondrial 
dysfunction [127]. Mitochondria not only depend on cal-
cium releasing sites such as endoplasmic reticulum (ER) 
but also interact with calcium channels (Cav2) present on 
the plasma membrane. Calcium ions can enter through 
the calcium channels when there is depletion of ER cal-
cium stores [16]. When the cell is activated, there is high 
accumulation of calcium ions in the mitochondria as 
compared to the cytosol [15].

Despite the fact that mitochondria are responsible for 
production of energy, they also regulate cellular signal-
ling (calcium signalling), cell defence, and cell death [16]. 
Besides, mitochondrial calcium regulates calcium cur-
rents in the cell for signalling process, ATP synthesis, and 
initiation of cell death. Thus, mitochondrial function and 
calcium homeostasis are entwined processes that regu-
late each other [16]. Noteworthy, ATP is important for 
regulation of membrane excitability, synaptic transmis-
sion, transcription, and apoptosis [15]. Neurons require 
ATP to carry out their activity at synapse and the mito-
chondrial calcium uniporter (MCU) present in these cells 
allows calcium ions to enter neurons for different activi-
ties [15]. Calcium ions can activate the release of BDNF 
for growth and repair of neurons [128]. Mitochondria 
can affect synaptic plasticity in several ways; in conjunc-
tion with BDNF, they can supply ATP for synaptic con-
nections and they can prune those connections away 
[128]. Furthermore, mitochondria can also produce neu-
rosteroids that can determine how calcium ions enter the 
neuron [129].
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Calcium overload in the mitochondria activates apop-
totic cascade leading to cell death [130, 131]. Figure  9 
summarizes the mechanism. Conversely, low levels of 
calcium in mitochondria can induce autophagy [132]. 
Figure 10 summarizes the mechanism. Moreover, exces-
sive accumulation of calcium ions in the mitochondria 
of the neuron can lead to excessive neuronal firing like 
in epileptic seizure, thereby, leading to neuronal death 
[129]. Mitochondrial calcium buffering is very impor-
tant and its impairment can cause several diseases. For 
example, calcium overload due to failure of the mito-
chondrial buffering system in skeletal muscles leads to 
amyotrophic lateral sclerosis [133]. In summary, excitable 
cells including neurons require proper regulation of cal-
cium and mitochondrial homeostasis. Whereas dimin-
ished mitochondrial calcium influx can result in loss of 
neuronal function, excessive mitochondrial calcium can 
induce neuronal damage and death. Mitochondria supply 
energy for proper brain functioning, enhancing synaptic 
plasticity, production of hormones and signalling mole-
cules, and regulating neurotransmitters, and its dysfunc-
tion can lead to several diseases including ID [129]. Thus, 
we speculate that gain-of-function variants can induce 
neuronal apoptosis (Fig.  9), whereas, loss-of-function 

mutations can activate autophagy (Fig.  10) resulting in 
ID. Nevertheless, this hypothesis needs further stud-
ies for confirmation. Noteworthy, for the few cases that 
received muscle biopsy tests, evidence of mitochondrial 
dysfunction was noticed for two cases carrying gain-of-
function variants; decreased mitochondrial complex I 
and III activity for the case with CACNA1C variant [73] 
and partial deficits in complexes II and III for the case 
carrying CACNA1A variant [63].

Excessive calcium influx through NMDARs can induce 
neurotoxicity via activation of neuronal nitric oxide syn-
thase (nNOS) [127] and neuronal NADPH oxidase-2 
(NOX2) pathways [134]. Excessive mitochondrial accu-
mulation of calcium ions in neurons can lead to excessive 
neuronal hyperexcitabilty, similar to that observed in epi-
lepsy, thus, leading to neuronal death [129].

Calcium channels and epilepsy
We found that more than half of the reported cases 
had concomitant epilepsy or epileptic encephalopa-
thy. It is unclear whether epileptic activity played a role 
in the development of ID. Rodent studies have shown 
that epileptic encephalopathies, frequent seizures, and/
or interictal epileptic discharges can lead to synaptic 

Fig. 9 The mechanism of how gain-of-function variants can lead to ID/GDD. Calcium ions can enter into neuronal cell via Cav1.2, Cav1.4, Cavα2δ, 
Cav2.1, Cav2.2, Cav2.3, Cav3.1, Cav3.2 and Cav3.3. In normal physiology, some of the calcium ions go to the nucleus to initiate gene transcription, 
translation and protein synthesis essential for learning and memory, some go to mitochondria for ATP synthesis (essential for learning and memory) 
and some to the endoplasmic reticulum (ER) for storage. Gain-of- function variants can allow excessive influx of calcium ions inside the cells. This 
will reduce the amount of ATP production while contributing to the accumulation of reactive oxygen species (ROS) and release of cytochrome C 
that induces apoptosis of neuronal cell. Many red and blue solid circles stand for high calcium levels
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reorganization, abnormal neurogenesis, or disruption of 
the developing neural circuits, which can cause ID [135]. 
However, some of the underlying aetiologies for epi-
lepsy can also cause ID independently [135, 136]. Note-
worthy, some of the antiepileptic drugs can exacerbate 
ID [135, 136]. A previous study on sodium channelopa-
thy (SCN1A alleles) revealed that seizure frequency and 
electroencephalography abnormalities do not correlate 
with the degree of ID and behavioural disturbances [137]. 
Besides, Scn1a knockout mice demonstrated cognitive 
impairment even without seizures [138]. However, no 
similar study has been performed on calcium channelo-
pathies. Based on our present knowledge about the exist-
ing cerebro-cerebellar circuits [139] we speculate that ID 
and EP might occur independently. Calcium channelo-
pathies can impair the development of the cerebellum 
leading to abnormalities in different cerebro-cerebellar 
circuits accounting for ID and EP separately.

Calcium channels and cerebellum
The cerebellum plays a major role in the planning and 
execution of movement as well as in language and 

attention [140]. In our study, cerebellar atrophy was 
observed in 25% of the retrieved cases. There are impor-
tant cerebro-cerebellar circuits responsible for learning 
and memory [139]. Calcium channels are crucial for the 
development of the brain including the cerebellum [23]. 
Therefore, calcium channelopathies can cause cerebel-
lar morphological changes leading to several neurode-
velopmental disorders including ID, autism, epilepsy, 
and attention deficit hyperactivity disorder [139, 141]. 
Abnormal cerebellar development and/or early cerebellar 
damage can affect behaviour via the closed-loop circuits 
connecting the cerebellum with multiple areas in the cer-
ebral cortex. Behavioural changes depend on the affected 
cerebro-cerebellar circuits [139]. Six out of 12 cases with 
CACNA1A variants and ID showed statistically sig-
nificant association with cerebellar atrophy according 
to one study [45]. Besides, only two cases in that study 
presented with epilepsy, thus, questioning the role of 
epilepsy in developing ID for the cases with CACNA1A 
variants [45]. In another study, abnormal cerebellar 
development caused by CACNA1G alleles was hypoth-
esised as the possible cause of cognitive impairment [23]. 

Fig. 10 A summary of how loss-of- function variants can lead to autophagy. Calcium ions can enter into neuronal cell via Cav1.2, Cav1.4, Cavα2δ, 
Cav2.1, Cav2.2, Cav2.3, Cav3.1, Cav3.2 and Cav3.3. In normal physiology, some of the calcium ions go to the nucleus to initiate gene transcription, 
translation and protein synthesis essential for learning and memory, some go to mitochondria for ATP synthesis (essential for learning and 
memory) and some to the endoplasmic reticulum for storage. Calcium stored in the endoplasmic reticulum (ER) is used when there is minimal/
no influx of calcium ions inside the cells. Autophagy occurs when there is metabolic stress such as low ATP and nutrient starvation. Low levels of 
calcium ions inside the neuronal cell being due to loss-of- function of calcium channels or due to depletion in ER can activate autophagy pathway. 
Low calcium entrance in the mitochondria will lead to low production of ATP which will activate the AMP-activated protein kinase (AMPK, a 
sensor of energy levels) and mTOR complex 1 (mTORC1) which in turn induce autophagy. Likewise, low calcium levels from the ER can activate 
calmodulin-dependent protein kinase kinase β (CaMKKβ) and then AMPK leading to autophagy. Dotted arrows signify low levels. Few red solid 
circles stand for low calcium ions levels
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A rodent study demonstrated the participation of the cer-
ebellum in cognitive function [142]. Our review consoli-
dates evidence for the theory that the cerebellum might 
be involved in learning and memory, thus, supporting 
our speculation that calcium channelopathies lead to cer-
ebellar atrophy that can cause ID via abnormal cerebro-
cerebellar circuits.

Noteworthy, conventional MRI was used as a method 
to detect abnormalities for the identified cases. Thus, 
there is a possibility that other cases were missed due 
to the limitation of this modality. Advanced imaging 
methods including the fMRI and H-MRS revealed brain 
abnormalities (including metabolic changes) that could 
not be detected with conventional MRI for the cases 
diagnosed with temporal lobe epilepsy and autism [31, 
32], NGD [33], and minimal hepatic encephalopathy 
with liver cirrhosis [34]. Besides, there was a correlation 
between choline/creatine ratio and cognitive deficits 
and genotypes for the cases diagnosed with NGD [33]. 
Furthermore, abnormal cognitive results correlated 
with apparent diffusion coefficient value and metabolic 
changes for the children diagnosed with minimal hepatic 
encephalopathy with liver cirrhosis signifying that altered 
metabolic changes and cerebral edema were responsi-
ble for cognitive changes [34]. Consequently, fMRI and 
H-MRS imaging modalities are recommended for the ID/
GDD cases. Early detection of metabolic changes can aid 
clinicians to minimize cognitive decline.

Available animal models, modulators, and pathways for ID/
GDD related to calcium channels defects
A comprehensive review of literature was also carried out 
for animal models of all reported calcium channel genes 
related to ID. Unfortunately, only a few calcium channel 
genes have animal models for ID. Many authors focused 
more to study migraine, ataxia and epilepsy through 
animal models. There are several interventions used for 
aforementioned conditions with available animal mod-
els. For instance, seizures were inhibited by ethosuximide 
and valproic acid in Cacna1a Tottering-6j mice [215] and 
Cacna1a-mutant GRY rat [143]. Acetazolamide could 
abolish stress-induced ataxia in Cacna1a mice [144] but 
had no effect on HEK cells carrying mutation for epi-
sodic ataxia type 2 [145]. Cav1.2 current could be inhib-
ited by nifedipine [146], diltiazem [147] and miR-135b 
[148]. Niflumic acid could block Cav3.3 current [149] 
while 6-prenylnaringenin could block Cav3.2 current 
[150]. Gabapentin is a ligand of Cav1.3 [151]. The com-
monest affected pathway for the available studies is the 
apoptotic pathway [152–155] followed by oxidative stress 
pathway [156, 157] and autophagy [158]. More details 
can be found in Table 2. Therefore, we argue future stud-
ies on ID/GDD involving animal models to be conducted. 

Moreover, studies focused on treatments aiming to miti-
gate cognitive impairment should be carried out.

Available other functional models, modulators 
and pathways for ID/GDD related to calcium channels 
defects
Upon intensive review of literature, we found that tsA-
201, HEK293T and mouse chromaffin cells are being 
used to study ID, epilepsy and autism [74, 82, 84, 85]. 
Besides, SH-SY5Y human neuroblastoma cells was used 
for familial hemiplegic migraine type 1 and episodic 
ataxia [159, 160] and progressive myoclonic epilepsy 
[161]. Human induced pluripotent stem cell-derived 
cardiomyocyte (hiPSC-CM) was used for long-QT syn-
drome phenotype [162]. Induced pluripotent stem cell 
(iPSC) knockout resource was used for autism spectrum 
disorder [163]. COS-7 cells was used for spinocerebel-
lar ataxia type 2 [164]. Modulators for Cav2.1 current in 
functional models include miR-3191-5p [165], SIS-RNAi 
[160] and barbiturate pentobarbital [166]. Cav1.2 current 
can be modulated by micro-RNA-137, -221, -153, -103 
and -222 [167–170], nifedipine and benidipine hydro-
chloride [171], rituximab [172], bay K8644 [173], estra-
diol [148], roscovitine [174], stac2 and stac3 [175] and 
azelnidipine [176]. Sipatrigine, eugenol, and lamotrigine 
can block Cav2.3 current [177, 178]. Endostatin, zon-
isamide, clozapine, roscovitine, mibefradil, iron and zinc 
can block Cav3.1 channels [179–185]. Dearomatized iso-
prenylated acylphloroglucinol and monoterpenoid, hypa-
tone A could rescue pathological gating properties for 
spinocerebellar ataxia 42 [186]. KYS-05090S could block 
Cav3.2 current [187]. Cav1.3 current could be blocked 
by microRNA-107 [188, 189] and amlodipine [190]. The 
commonest affected pathway is apoptotic pathway [127, 
155, 161, 172, 191–196] followed by autophagic pathway 
[158, 197–199], Ras/Raf/MEK-ERK signaling pathway 
[200–203] and Wnt pathway [173]. Further details can be 
found in Table 3.

Evaluation and investigations
The aforementioned clinical features (multisystem abnor-
malities)  should guide clinicians in suspecting mutations 
in calcium genes. In addition, progressive cerebellar, cer-
ebral and optic atrophy in the brain imaging are impor-
tant clues. Therefore, we recommend brain imaging and 
next generation sequencing diagnostic methods to be 
used whenever there is a suspicion. Since there is an evi-
dence of many CNVs encompassing calcium genes and 
yet relate to ID/GDD, we suggest microarray tests to be 
considered for the cases that present with multiple con-
genital anomalies. We recommend intensive metabolic 
tests in urine, blood and cerebrospinal fluid. Those tests 
can check the levels of pyruvate, lactic acid and others as 
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per consensus based expert recommendations for evalu-
ation of mitochondrial disease [204]. Molecular genetic 
tests for mitochondria can be carried out but muscle 
biopsy is recommended even if the results becomes nega-
tive. Tests that can detect biochemical signs of neuro-
transmitter abnormalities are recommended. Advanced 
neuroimaging modalities including fMRI and H-MRS are 
recommended.

Treatments
Studies on treatment focusing on calcium channelo-
pathies for ID/GDD are not available. Available stud-
ies focused more on epilepsy, ataxia and migraine, and 
those drugs do not have beneficial effects on cognition. 
Verapamil and acetazolamide are good for migraine 
[205]. Acetazolamide has been reported to be effective 
for ataxia to some cases [206] and ineffective for others 
[207]. Ethosuximide and valproic acid are effective for 
absence epilepsy [208]. Otherwise, there are some treat-
able ID/GDD, especially those caused by inborn errors 
of metabolisms (n = 81). These include 19 disorders of 
organic acids, lysosomes (n = 12), amino acids (n = 12), 
hyperhomocysteinemia (n = 7), vitamins/co-factors 
(n = 8), urea cycle (n = 7), neurotransmission (n = 7), 
creatine (n = 3), cholesterol and bile acid (n = 2), fatty 
aldehydes (n = 1), glucose homeostasis and transport 
(n = 2), metals (n = 3), mitochondria (n = 2), peroxisomes 
(n = 1), and pyrimidines (n = 2)[209]. Diazoxide choline 
controlled-release tablets have been reported to be useful 
in controlling hyperphagia, obesity and aggressive behav-
iors in cases with Prader-Willi syndrome [210, 211]. This 
drug has also been reported to prevent the aggravation 
of the pre-existing ID/GDD for the cases with syndromes 
known to be accompanied with hyperinsulinaemic hypo-
glycaemia such as Beckwith-Wiedemann, Sotos, Kabuki 
and Turner [212]. The early initiation of the diazoxide 
within 3 months of the onset of symptoms is associated 
with normal intelligence [213].

Intervention strategies
Upcoming studies should focus on developing ani-
mal models for ID/GDD aiming to explore the possible 
underlying mechanisms for ID/GDD and possible treat-
ment options. If possible, future studies should focus 
on identifying the effect of calcium blockers and open-
ers both in  vivo and in  vitro. Additionally, future stud-
ies should focus on exploring the relationship between 
calcium channelopathies, mitochondria, and ID/GDD 
as well as the role of cerebellar morphological changes 
in ID/GDD. Lastly, future studies can explore whether 
epileptic activity in calcium channelopathies can cause 
ID/GDD or whether ID/GDD and epilepsy occur inde-
pendently. Expanding the understanding of mechanisms 

underlying the development of ID/GDD will help to 
improve the treatment strategies for ID/GDD.

Comparison of our review with other reviews
Previous narrative reviews summarised the relationship 
between calcium channelopathies and epilepsy as well as 
autism spectrum disorder [17, 35–37]. To the best of our 
knowledge, this is the first systematic review to explore 
the relationship between calcium channelopathies and 
ID/GDD. Our review has revealed variations in ten 
genes that relate to ID/GDD including CACNA1A, CAC-
NA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, 
CACNA2D2, CACNA1E, CACNA1F, and CACNA1G. 
Most variants exhibited gain-of-function effect. Severe 
to profound ID/GDD was observed more for the cases 
with gain-of-function variants as compared to those 
with loss-of-function. CACNA1E, CACNA1G, CAC-
NA1F, CACNA2D2 and CACNA1A associated with more 
severe phenotype. In another review, both gain- and 
loss-of-function variants in CACNA1A, gain-of-func-
tion variants in CACNA1H, and variants in CACNA1G 
were linked to epilepsy [35, 36, 214]. Calcium overload 
resulting to mitochondrial dysfunction, oxidative stress, 
and cell damage was concluded as a possible patho-
mechanism important for the development of acquired 
epilepsies [36]. In the review regarding autism spec-
trum disorder, CACNA1A, CACNA1B, and CACNA1C 
(gain-of-function), CACNA1D (gain-of-function), CAC-
NA1E and CACNA1F (gain-of-function), CACNA1G 
and CACNA1H (loss-of-function), CACNA1I, CACNB1, 
and CACNB2 (gain-of-function effect) as well as CAC-
NA2D3 and CACNA2D4 (loss-of-function effect) were 
reported as candidate genes [37]. Our review has high-
lighted CACNA1C, CACNA1F, CACNA1I, CACNA2D1 
and CACNA2D2 as additional genes for epilepsy, and 
CACNA2D1 for autism spectrum disorder. Furthermore, 
our review has revealed CACNA1A, CACNA1C and 
CACNA2D1 as the candidate genes for attention deficit 
hyperactive disorder.

Merits of the study
This review has revealed that calcium channelopathies 
contribute to the development of ID/GDD. Variations 
in 10 genes that relate to ID/GDD including CACNA1A, 
CACNA1C, CACNA1I, CACNA1H, CACNA1D, CAC-
NA2D1, CACNA2D2, CACNA1E, CACNA1F, and 
CACNA1G were found, and most variants exhibited 
gain-of-function effect. It has unveiled that severe to 
profound ID/GDD is observed more for the cases with 
gain-of-function variants as compared to those with loss-
of-function. Notably, CACNA1E, CACNA1G, CACNA1F, 
CACNA2D2 and CACNA1A correlated with more severe 
phenotype. Our review has further revealed variants in 
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CACNA1C, CACNA1F, CACNA1I, CACNA2D1 and 
CACNA2D2 as additional genes related to epilepsy. 
Besides, CACNA2D1 is related to autism spectrum dis-
order while CACNA1A, CACNA1C and CACNA2D1 are 
candidate genes for attention deficit hyperactive disor-
der. Our study has showed the existence of the relation-
ship between calcium channelopathies, mitochondria 
dysfunction, cerebellar morphological changes, and ID/
GDD. We have summarized the information related to 
available animal, and functional cell models, modulators, 
and pathways, evaluation, investigations, treatments and 
intervention strategies for ID/GDD related to calcium 
channels defects. Our review will help future studies on 
the mechanisms of ID/GDD to develop novel treatment 
strategies for this condition.

Study limitations
Our study has several limitations. We could not discuss 
the relationship between ID/GDD and other channelo-
pathies (sodium, potassium and chloride) in detail, as 
the breadth of content that a review of that scope would 
provide exceeds the capacity of one article. There is no 
advanced neuroimaging modalities including fMRI and 
H-MRS were done for the reported cases; therefore, it is 
difficult to comment on brain metabolic changes.

Conclusions
In summary, calcium channelopathies can cause ID/
GDD. There is a scarcity of animal studies on the mecha-
nisms of ID/GDD in relation to calcium channelopathies. 
Studies on treatment options for cognitive impairment 
are lacking. The underlying mechanisms for the reported 
variants include gain- and/ or loss-of-function, alteration 
in kinetics (activation, inactivation) and dominant-nega-
tive effects of truncated forms of alpha1 subunits. While 
both gain- and loss-of-function variants are associated 
with ID/GDD, the mechanisms underlying their involve-
ment are unclear.
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