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Clarifying the relationship 
between pulmonary langerhans cell 
histiocytosis and Alpha 1 antitrypsin deficiency
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Gwenaël Lorillon3 and Abdellatif Tazi3,5,6* 

Abstract 

Pulmonary Langerhans cell histiocytosis (PLCH) is a rare, smoking related, progressive diffuse cystic lung disease that 
occurs primarily in smokers. The aim of this study was to determine if there was an increase in alpha-1 antitrypsin 
deficient alleles or phenotypes in a large series of PLCH patients and whether serum alpha-1 antitrypsin levels cor-
related with markers of disease severity. Fifty PLCH patients, 24 with a diffuse cystic lung pattern and 26 with a typical 
nodulo-cystic pattern on imaging were included. The mean alpha-1 antitrypsin levels were in normal range for both 
the population with diffuse cystic lung pattern population (1.39 g/L ± 0.37) and the nodulo-cystic pattern group 
(1.41 g/L ± 0.21). Deficiency alleles PiZ and PiS were 1% and 2% respectively in the entire study population of 50 
patients, demonstrating no increased incidence of alpha-1 antitrypsin deficiency in PLCH. Alpha-1 antitrypsin levels 
showed no correlation with lung function parameters or extent of cystic lesions on lung computed tomography.
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Main text
Pulmonary Langerhans cell histiocytosis (PLCH) is a 
rare, smoking related, progressive diffuse cystic lung dis-
ease that occurs mainly in young smokers of both gen-
ders [1]. In adults, it is frequently the only manifestation 
of the disease, but may also be a part of systemic disease 
[1]. Findings on high resolution computed tomography 
(HRCT) varies from a nodulo-cystic pattern in recently 
diagnosed PLCH to a diffuse cystic lung disease pattern 
[2,3]. In the latter, the disease may be misinterpreted as 
emphysema, and given the smoking history the diagno-
sis may be difficult to delineate. Furthermore, in long 
standing PLCH patients superimposed emphysema 
can be observed. Approximately 50% of PLCH patients 
harbour somatic BRAFV600E mutations in cells of the 

myeloid/monocyte lineage, and while the pathogenesis 
of PLCH is not entirely understood, it is likely related to 
smoking induced injury and induced dendritic cell dys-
function  [4] and airway inflammation  [5]. Langerhans 
cells accumulate in bronchiolar airways with lympho-
cytes, macrophages, and eosinophils, thought to result 
in tissue destruction and remodelling and resultant cyst 
formation. It has been proposed that metalloprotein-
ases produced by inflammatory cells may contribute to 
destruction of extracellular matrix, including matrix met-
alloproteinases (MMPs)  [6].

Alpha-1 antitrypsin (AAT) deficiency (AATD) is an 
autosomal codominant condition characterised by low 
circulating levels of AAT protein, the archetypal serine 
protease inhibitor. The most common variants associ-
ated with disease are the Z (Glu342Lys) and S (Glu-
264Val) mutations, caused by the substitution of glutamic 
acid for lysine or valine at positions 342 and 264 of the 
polypeptide  [7,8]. AATD results in an increased risk of 
emphysema at a young age and the risk is increased with 
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concomitant smoking  [9]. In AATD there is an imbal-
ance between proteases and antiproteases in the lung 
and there is abnormal inflammatory response and evi-
dence of increased pulmonary inflammation  [10,11]. 
Serine proteases may result in tissue injury and smok-
ing may increase the amount present in the lung  [12]. 
Consequently, it has been hypothesized that there may 
be a link between PLCH and AATD through a common 
pathway of proteolytic damage, further augmented by 
smoking  [13]. In a small study conducted on 34 patients 
with PLCH there was an increased frequency of deficient 
AATD alleles noted, PiZ and PiS accounting for 5.88% 
and 2.94% of alleles  [14]. To further clarify this proposed 
relationship, we sought to measure AAT levels and evalu-
ate AAT phenotype in a large series of carefully classi-
fied PLCH patients, including both predominant diffuse 
cystic lung disease pattern and the nodulo-cystic pattern 
of PLCH.

Methods
Fifty patients with a diagnosis of PLCH attending the 
National Reference Centre for Histiocytoses, Paris, 
France were included following informed consent (regis-
try number: CNIL 909207; CCTIRS 09.191). All patients 
had diagnosis confirmed by either histology or based on 
typical HRCT findings either alone or in association with 
characteristic extrapulmonary involvement (e.g., lytic 
bone lesion, diabetes insipidus) following the exclusion 
of alternative diagnoses  [3]. HRCT images were analysed 
at window levels appropriate for the pulmonary paren-
chyma (widths of -600-1600 HU) and the extent of the 
cystic lesions (including thick- and thin-walled cysts) was 
assessed as previously described  [3]. Patients were clas-
sified into subgroups according to CT score values. For 
the whole lung, the maximum value of the cystic HRCT 
score was 24, with a total cystic lung score value greater 
than 12 denoting high (13–18) and very high (19–24) 
extent of cystic lung lesions respectively  [3]. Lung vol-
umes were evaluated by plethysmography, and forced 
expiratory volume in one second (FEV1) and forced vital 
capacity (FVC) were determined by flow curve volume. 
Diffusing capacity of carbon monoxide (DLCO) was meas-
ured using the single-breath method. Obstruction was 
defined as a ratio of FEV1 to FVC < 70%, lung restric-
tion was defined as a total lung capacity (TLC) < 80% of 
the predicted value, and air trapping was defined as a 
ratio of residual volume (RV) to TLC > 120% of the pre-
dicted value. Serum/plasma concentration of AAT was 
determined by nephelometric assay (Beckman-Coulter, 
IMMAGE 800) with reference values of 1.0–2.7 g/L  [15]. 
AAT phenotypes were assessed with Hydragel 18 A1AT 
Isofocusing kit on a Hydrasys System (Sebia) as previ-
ously described  [16].

Results
Twenty-four PLCH patients with a diffuse cystic lung 
pattern on HRCT were evaluated for A1AT, consisting of 
15 current and 9 ex-smokers; 13 females and 11 males; 
and 9 patients with multisystem LCH. The median time 
between PLCH diagnosis and AAT serum measure-
ment and phenotype analysis was 1  year [IQR, 0; 10]. 
PLCH diagnosis was histologically confirmed in 13 (54%) 
patients (lung n = 6, bone n = 2, skin n = 4, gut n = 1), 
the other 11 patients had either multisystem PLCH 
(n = 3) or had typical bizarre cysts. The median HRCT 
cyst score was 20 [IQR, 16.5; 22], 17 patients (71%) had 
airflow obstruction with a median FEV1% predicted of 
58.5 [39.5–69.5]. Twenty-six additional PLCH patients 
(17 females, all current smokers) with a typical nodulo-
cystic lung HRCT pattern were also evaluated for AAT 
levels and phenotype, with a median time between 
PLCH diagnosis and AAT assessment of 0  year [IQR, 
0; 5] (Table 1). The mean AAT level in the diffuse cystic 
lung disease pattern population was 1.39 g/L (± 0.37) and 
1.41 g/L (± 0.21) in the nodulo-cystic pattern group. One 
compound heterozygote PiSZ individual was identified 
with an AAT level of 0.54 g/L and one PiMS phenotype 
identified in the diffuse cystic cohort and all patients in 
the nodulo-cystic disease were PiMM. Deficiency alleles 
PiZ and PiS were 1% and 2% respectively in the entire 
cohort, while the incidence of PiZ and PiS in the French 
population are estimated at 7.6% and 1.3%  [17], demon-
strating that there is no increased incidence of AATD 
in PLCH. There was no correlation between AAT levels 
and FEV1 (R2 = 0.02135, p = 0.4957), FVC (R2 = 0.02930, 
p = 0.4239), DLCO (R2 = 0.09381, p = 0.1552) or CT cyst 
scores (R2 = 0.1225, p = 0.093).

Discussion
It has been previously hypothesized that there may be a 
link between PLCH and AATD. This is possibly due to 
shared mechanisms of proteolytic tissue damage. Previ-
ously it has been proposed that proteases produced by 
inflammatory cells in the lungs of PLCH may contribute 
to extracellular matrix destruction  [6], and the primary 
mechanism of emphysema in AATD is the unopposed 
proteolytic damage of proteases due to lack of AAT to 
counteract this. Moreover, AATD is an inflammatory 
condition due to the reduced AAT capacity to modu-
late inflammatory cytokines, and similarly PLCH is an 
inflammatory condition  [5]. Finally, it is evident that 
smoking affects protease activity and can alter the funci-
ton of AAT 12. Hence, it was hypothesised that these two 
conditions may share a common pathogenic mechanism. 
Prior smaller studies have indicated a possible clinical 
link between the two rare diseases, however, our report 
is the biggest study to date, and we have demonstrated 
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no increased rate of AATD or AAT deficient alleles in a 
large PLCH series. The prior hypothesis is not supported 
by this larger dataset, and moreover there was a lack of 
correlation between AAT level and pulmonary func-
tion or CT scores in PLCH. While indeed an imbalance 
between protease and antiprotease activity could contrib-
ute to cyst development in PLCH, whether this is metal-
loproteinase or serine protease driven remains unknown, 
it is apparent that there is no clinical link between these 
two rare lung diseases. To determine whether smok-
ing related changes in antiprotease function plays a role 
remains unclear in PLCH. Further mechanistic studies 
may elucidate if there is any role of AAT protein either as 
an antiprotease or immune modulator in the pathogen-
esis of PLCH, but this seems unlikely to be a major player 
given the lack of correlation in this study.
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Table 1  Characteristics of PLCH patients included in the study

*  Restriction was defined as TLC < 80% of predicted; obstruction as FEV1/FVC < 70% and air trapping as RV/TLC > 120% of predicted

PLCH, pulmonary Langerhans cell histiocytosis; AAT, alpha-1 antitrypsin; IQR, interquartile range; NYHA New York heart association, MS multisystem; TLC total lung 
capacity; FVC forced vital capacity; RV residual volume; FEV1 forced expiratory volume in 1 s; DLCO diffusing capacity of carbon monoxide; N/A, not applicable

Characteristics Diffuse cystic pattern n = 24 Nodulo-cystic 
pattern n = 26

Age, years, median, [IQR] 40 [31–46.75] 45 [34–47]

Female sex, n (%) 13 (54%) 17 (65%)

Histological diagnosis 13 (54%) 3 (12%)

Isolated PLCH, n (%) 15 (62.5%) 23 (88%)

MS LCH, n (%) 9 (37.5%) 3 (12%)

Time from PLCH diagnosis, years, median, [IQR] 1 [0–10] 0 [0–5]

Smoker, n (%) 15 (62.5%) 24 (92%)

Ex-smoker 9 (37.5%) 2 (8%)

Dyspnoea 18 (75%) 16 (62%)

NYHA II/III/IV 9/8/1 14/2

TLC, % of predicted 104 [92.75–123.75] 105 [95.25–123]

FVC, % of predicted 78 [69.25–87.25] 100 [84.25–114]

RV/TLC, % of predicted 148.5 [118.5–166.75] 111.5 [103–132.5]

FEV1, % of predicted 58.5 [39.5–69.5] 86.5 [76–100]

FEV1/FVC % 66 [48.25–72] 77 [69.25–80.75]

DLCO, % of predicted, n = 23 37 [28–56] 52 [41–63]

Restriction* (%) 0 0

Obstruction (%) 17 (71%) 7 (27%)

Air trapping (%) 17 (71%) 10 (38%)

CT cyst score, median, [IQR] 20 [16.5–22] N/A

Alpha-1 antitrypsin level (g/L) (mean, SD) 1.39 (± 0.37) 1.41 (± 0.21)

PiM allele frequency 94% 100%

PiS allele frequency 4% 0%

PiZ allele frequency 2% 0%
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