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Abstract 

Background: Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disor‑
ders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The 
objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disor‑
ders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis.

Results: We studied a cohort of 31 patients who have paediatric‑onset movement disorders with unrevealing etiolo‑
gies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagno‑
ses have been confirmed in 10 patients with disease‑causing variants in CTNNB1, SPAST, ATP1A3, PURA , SLC2A1, KMT2B, 
ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and 
treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease 
in dystonia after receiving globus pallidus interna deep brain stimulation.

Conclusions: A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of 
prognosis and contributes to a more effective clinical management. The study highlights the potential of implement‑
ing precision medicine in the patients.
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Background
Paediatric movement disorders (MDs) are a group 
of complex and heterogeneous neurological diseases 
including both hyperkinetic [1] and hypokinetic disor-
ders [2]. They are presented with overlapping phenotypes 
and with a wide spectrum of genetic mutations causing 
defects in various pathophysiological pathways [3–5].

Diagnosis of childhood MDs is not straightforward. 
Phenotypic diagnosis only has limitations as many 
symptoms may have more than one underlying etiology 
and any particular pathophysiology can result in a com-
plex combination of symptoms [6]]. Genetic diagnosis 
allows a comprehensive understanding of the underlying 
pathophysiology and provides specific treatment options 
[7–12].

Conventionally, genetic testing is done by sequen-
tial single gene Sanger sequencing. This is an ineffective 
method in diagnosing diseases like MDs due to its genetic 
heterogeneity. With the advent of next-generation 
sequencing (NGS), diagnosing strategies has changed 
to gene-panel based NGS or whole exome sequencing 
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(WES). Neveling et  al. performed a retrospective study 
comparing the diagnostic yield by Sanger sequencing and 
NGS in five different cohorts. For patients with move-
ment disorders, the diagnostic yield is increase from 
5% by Sanger sequencing only to 20% by WES with tar-
get gene panel analysis. This shows that NGS is a more 
superior diagnostic tool when compare to conventional 
Sanger sequencing [13].

The effectiveness by gene-panel based NGS study has 
been shown in subsequent studies. Van Egmond et  al. 
performed a study in 61 dystonia patients with a panel 
of 94 genes, reaching a diagnostic yield of 14.8% [14]. 
Reale et al., Montaut et al. and Graziola et al. conducted 
three separated studies using panels with 65, 127 and 102 
genes, giving a diagnostic yield of 11.3%, 22%, and 28% 
[15–17]. Although these three studies started in the same 
year (2015), the number of genes included in the analy-
sis differs. Another study by Cordeiro et  al.’s performed 
the study used targeted direct sequencing, targeted panel 
of dystonia, of epilepsy, and of cellular energetic NGS or 
WES. The diagnostic yield was 51%. Although they did 
not mention the number of genes included in each panel, 
from the result, the diagnoses were made majority in epi-
lepsy panel or WES. Six diagnoses (CAMTA1, CTNNB1, 
KCNA2, SLC13A5, SLC9A6, mitochondrial ND3) would 

be missed as these genes were not included in other 
movement studies. This demonstrated WES is superior to 
targeted sequencing which is limited by the pre-selected 
gene panels that have to be frequently updated owing to 
discovery of new disease-associated genes [18].

In the present study, we performed WES in a cohort 
of 31 patients with paediatric-onset MDs to review the 
genetic causes and potential treatment implications. We 
aim to highlight the importance of genetic diagnosis in 
guiding a more effective clinical management of these 
disorders.

Results
Cohort description
Clinical features of patients are summarized in Fig.  1, 
Table 1 and Additional file 1: Table 3. A total of 31 MDs 
patients were included in this study, in which 21 were 
males (68%) and ten were females (32%). Twenty-seven 
patients are Chinese (87%), while three patients (Patient 
21, 22 and 30) are Pakistani and one patient (Patient 2) 
is African Chinese. Age of onset ranged from birth to 
13 years of age. Five patients (16%) have pure spasticity 
or spastic paraplegia (SPG), four patients (13%) have pure 
dystonia, one patient (3%) has pure cerebellar ataxia, one 
patient (3%) has paroxysmal dyskinesia and 20 patients 
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Fig. 1 Graphical presentations of clinical and genetic outcome of patients
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(65%) have a combination of more than one MDs. Dys-
morphic features including microcephaly, and congeni-
tal anomalies including left atrophy kidney, duodenal 
atresia, pulmonary stenosis were seen in twelve patients 
(39%), and they are more common in patients with dysto-
nia (9/18, 50%) when compared with other MDs patients 
(3/13, 23%). Abnormality in the Magnetic Resonance 
Imaging (MRI) of the brain were identified in fourteen 
patients (45%) (Table 1).

Diagnostic yield and genetic variants found
Singleton exome was performed in 19 subjects and trio 
exome was performed in 10 families. Patient 17 was ini-
tially recruited for WES, unfortunately his DNA was 
insufficient to proceed and he passed away suddenly. 
Sanger sequencing of the exons and splice junctions of 
the GNAO1 gene was performed for this patient due to a 
strong clinical suspicion for GNAO1 defect.

Genetic diagnoses were made in 10 patients (32%), 
among eight were by virtual gene panels analysis and two 
by open-exome analysis. Disease-causing variants were 
found in two patients with SPG (2/5, 40%) in SPAST and 
SPG11, six patients with have a combination of more 
than one MDs (6/20, 30%) in GNAO1, SLC2A1, KMT2B, 
SPG11, ATP1A3 and ACTB. The diagnosis made in two 
patients with pure dystonia (2/4, 50%) were by open 
exome analysis, one with PURA  and one with CTNNB1 
and COL1A1 representing one man two diseases. Four 
patients have variants of uncertain significance (VUS) 
associated with the phenotypes (Table 1, Fig. 1). Interest-
ingly, patient 27 with a SLC2A1 mutation causing glucose 
transporter type 1 (GLUT1) deficiency syndrome, was 
initially suspected to have a neurometabolic disorder 
due to the presence of systemic hypoglycaemia, cerebel-
lar ataxia, spasticity and mild intellectual disability. Sub-
sequent endocrinological workup confirmed reactive 
hypoglycaemia. As the family refused lumbar puncture, 
GLUT1 deficiency was only diagnosed after WES.

Among the 14 patients with abnormalities in neuro-
imaging, 4 (29%) had genetic causes identified. Neu-
roimaging for patients with SPG11 variants showed 
periventricular white matter changes and thinning of 
corpus callosum indicating that these features could be 
typical for SPG11 deficiency (Fig. 2).

Clinical follow up with treatment implications
Among the 10 genetically diagnosed patients, 8 patients 
(80%) have potential treatment implications (Table  2). 
Patient 29 with KMT2B mutation received globus pal-
lidus interna deep brain stimulation (GPi-DBS) with 
mild improvement in dystonia a few months after the 
surgery and more definitive effectiveness will be evalu-
ated in the future. Patient 17 with GNAO1 mutation 

prescribed tetrabenazine and has been useful in control-
ling the significant dyskinesia before he passed away sud-
denly. Patient 30 with SPG11 did not show any response 
to L-dopa. For patient 19 with SPG11 and patient 31 
ACTB mutation, Dopa and GPi-DBS was just started and 
planned, monitoring is required for treatment response. 
For patient 12 with CTNNB1 and COL1A1 mutation, 
Dopa was just started, and he has been referred to the 
endocrinologist for further management. Patient 20 and 
27 decline the treatment offers.

Discussion
Our study includes paediatric-onset movement disor-
ders with unrevealing etiologies after comprehensive 
investigations. Previous studies have investigated the 
genetic landscapes in cohorts with both adult and paedi-
atric patients, or paediatric only by targeted NGS and/or 
WES [13–17, 19]. Diagnostic rates were relatively higher 
in cohorts with only paediatric patients and with the use 
of WES. Comparing with studies using targeted NGS 
approach with a diagnostic rate range from 11 to 28%, 
our study and Cordeiro et al.[19] with WES has a higher 
diagnostic rate of 32% and 51% respectively. Further 
looking into the diagnoses, two (2/10, 20%) and six (6/26, 
23%) in our cohort and Cordeiro et  al.’s cohort can be 
made by WES only. This shows WES is useful in making 
additional diagnoses in MDs patients (Table  3). Moreo-
ver, the inclusion criteria in this study are more stringent 
than the previous paediatric studies as patients with a 
clear neurometabolic phenotype which are subsequently 
confirmed with targeted gene sequencing were excluded. 
This illustrates that the diagnostic yield through WES is 
still considerable (32% in our study) after an initial com-
prehensive neurometabolic investigations.

Better prediction of clinical courses
Genetic diagnoses allow the prediction of the subsequent 
clinical course. There is no definite difference in the clini-
cal phenotype between the molecular positive and nega-
tive cases. Patient 14 and 17 have been initially diagnosed 
as cerebral palsy which is a static condition with non-
progressive damage to the brain. Their neurological signs 
could have been overlooked if the clinical follow up was 
not over a prolonged period of time in terms of years. 
Patient 14 gradually developed progressive functional 
deterioration since 3  years of age from walking inde-
pendently to requiring aids over 5 years with prominent 
spasticity over both lower limbs but minimally at the 
upper limbs. The neuroimaging was misleading due to 
the presence of periventricular leukomalacia which could 
be mistaken as perinatal insult. Patient 17 had an ini-
tially static course with mild generalized dystonia which 
evolved into recurrent status dystonicus and sudden 



Page 7 of 12Kwong et al. Orphanet J Rare Dis           (2021) 16:32  

death at 15 years old. Identification of the genetic etiolo-
gies in these patients directed more accurate predictions 
of the clinical course and prognosis including progres-
sive lower limb spasticity for SPAST mutations and pro-
gressive MDs for GNAO1 encephalopathy with potential 
treatment implication according to previous case studies 
[20–24].

Potential genotype-targeted treatment implications
Treatments targeting specific genetic etiologies are 
significantly beneficial to patients’ prognosis. In our 

exome-positive cases, 80% (8/10) have potential treat-
ment implications.

Five patients (with variants in SPG11, CTNNB1, 
GNAO1, ATP1A3 and SLC2A1) might be managed by 
conventional medical and / or surgical treatments. Pre-
vious studies in patients with spastic paraplegia 11 
(SPG11) demonstrated neurotransmitter abnormalities 
in dopamine and tetrahydrobiopterin pathways [8]. In 
that study, all patients responded partially to L-dopa/car-
bidopa and sapropterin treatment and they suggested a 
trial of L-dopa/carbidopa and sapropterin treatment for 

Fig. 2 Brain Magnetic Resonance Imaging (MRI) of 2 patients with variants identified in SPG11. a Brain MRI of Patient 19 and 30 with periventricular 
white matter changes; b brain MRI of Patient 19 and 30 with thinning of corpus callosum. Arrows indicated the area with periventricular white 
matter changes and thinning of corpus callosum
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extrapyramidal signs and symptoms of SPG11 even with 
normal neurotransmitter levels [8]. However, Patient 30 
with SPG11 did not show any response to L-dopa despite 
the presence of secondary neurotransmitter deficiency 
in homovanillic acid before the molecular diagnosis 
was made. For CTNNB1 mutation, a recent case study 
reported a significant response to L-dopa treatment in 
a dystonic patient with a normal CSF neurotransmitter 
profile [12]. This response was possibly related to syn-
aptic dopamine increase as a previous study suggested 
the role of beta-catenin in dopamine neurons develop-
ment [25]. Treatment will be started for Patient 12. For 
GNAO1 encephalopathy, tetrabenazine was demon-
strated to be the most effective drug for the manage-
ment of involuntary movements [9]. This drug was useful 
in controlling the significant dyskinesia of Patient 17 
before the molecular diagnosis was confirmed and he 
passed away suddenly. For ATP1A3-associated disor-
ders, apart from the effective symptomatic treatment by 
calcium channel blockers, a recent study showed that 
adenosine-5′-triphosphate (ATP) supplementation in an 
alternating hemiplegia of childhood (AHC) patient had 
marked improvement in AHC episodes and psychomo-
tor development [26]. Treatment was declined by Patient 
20 with paroxysmal worsening of his parkinsonism fea-
tures. In addition to medical management, ketogenic diet 

(KD) was proved to be a very effective therapy as first 
line treatment for GLUT1 deficiency syndrome, which is 
associated with SLC2A1 mutation, and should be started 
in early disease stage [27, 28]. It is a high-fat diet that 
produces ketone bodies serving as an alternative energy 
source for brain metabolism and bypassing the GLUT 
defect [28, 29]. It was reported that KD could help in 
development and restore mental decline [29]. Unfortu-
nately, KD was declined by Patient 27 due to anticipated 
poor compliance to the diet.

Three out of 10 patients (with GNAO1, ACTB and 
KMT2B variants) could be considered for surgical 
interventions when medical therapies for dystonia fail. 
Patients with KMT2B-dystonia in previous studies 
showed good responses clinically after undergoing GPi-
DBS especially for paediatric and adolescent patients 
[10, 30]. Patient 29 with KMT2B mutation, being medi-
cally intractable with 4 anti-dystonic medications (gabap-
entin, clonazepam, carbamazepine, trihexyphenidyl), 
received GPi-DBS after confirming the molecular diag-
nosis with mild improvement in dystonia a few months 
after the surgery and more definitive effectiveness will 
be further evaluated in the future. GPi-DBS was also 
demonstrated to have beneficial effect in ACTB-asso-
ciated dystonia-deafness syndrome. In previous stud-
ies, four patients with the same mutation (p.Arg183Trp) 

Table 3 Previous studies investigating underlying genetic causes in patient cohorts with movement disorders

Neveling et al. 
[13]

Van Egmond 
et al. [14]

Reale et al. [17] Montaut et al. 
[16]

Cordeiro et al. 
[19]

Graziola et al. 
[15]

The present 
study

Country of 
patient recruit‑
ment

The Netherlands The Netherlands Italy France, Luxem‑
bourg and 
Algeria

Canada Italy Hong Kong SAR, 
China

No. of patients 
with MDs

50 61 (all with 
dystonia)

221 378 51 148 31

Onset age Adult and pae‑
diatric

Adult and pae‑
diatric

Adult and pae‑
diatric

Adult and pae‑
diatric

Paediatric Paediatric Paediatric

No. of young‑
onset MDs

Not specified 44 Not specified Not specified 51 148 31

Sequencing 
methods

Whole exome 
sequencing 
and target data 
analysis

Next generation 
sequencing 
and gene 
panel analysis

Targeted next 
generation 
sequencing

Targeted next 
generation 
sequencing

Targeted direct, 
targeted next 
generation or 
whole exome 
sequencing

Targeted next 
generation 
sequencing

Whole exome 
sequencing 
with both 
targeted and 
exome wide 
analysis. One 
variant was 
identified 
by Sanger 
sequencing

No. of genes in 
panel

151 94 65 127 – 102 –

Diagnostic yield 20% (10/50) 14.8% (9/61) 11.31% (25/221) 22% (83/378) 51% (26/51) 28% (42/148) 32% (10/31)

Treatment impli‑
cations

– – – – 38% of patients 
with a genetic 
diagnosis

– 80% of patients 
with genetic 
diagnosis
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showed substantial clinical improvement after GPi-DBS 
[31–33]. Therefore, patient 31 with ACTB mutation will 
be planned for GPi-DBS as the dystonia fails to improve 
on 5 medications (baclofen, trihexyphenidyl, L-dopa, 
clonazepam, gabapentin). For GNAO1 encephalopathy, 
although tetrabenazine was demonstrated to be the most 
effective drug, emergency GPi-DBS was shown to be 
helpful for those patients with hyperkinetic exacerbations 
[9]. Furthermore, dissection of phenotype-genotype cor-
relation suggested that different GNAO1 mutations affect 
the G protein function for the signaling loop in distinct 
ways that implicated different treatment options [11]. 
This suggested possible application of precision medicine 
for different GNAO1 variants identified in the patients.

Most of the previous studies in MDs patient cohorts 
had not investigated the therapeutic potentials based on 
the genetic diagnosis. Only the study of Cordeiro et  al. 
[19] suggested that 38% of their patients with genetic 
diagnoses had treatment implications (Table  3), while 
our study has a much higher percentage of 80%. With the 
growth of new treatment strategies emerging in recent 
years, genetic testing becomes even more crucial to 
direct genotype-targeted therapies in MDs.

Conclusions
Given the diagnostic yield of 32% in our patient cohort 
and clinical treatment implications in 80% of the 
molecularly diagnosed cases, WES is a valuable tool for 
molecular investigation in paediatric-onset MDs with 
unrevealing, comprehensive neurometabolic workup 
especially aiming for potentially treatable inborn meta-
bolic diseases. This study demonstrated that identifica-
tion of genetic etiologies of MDs allows a more accurate 
prediction of clinical course and guides the use of poten-
tial therapies for better clinical outcomes. As such, there 
is an increasing potential to develop precision medicine 
for treatment of MDs.

Methods
Patient cohort
The study was conducted in Queen Mary Hospital and 
Duchess of Kent Children’s Hospital, two affiliated hospi-
tals of The University of Hong Kong (HKU). Over 4 years 
(2016–2019), 140 patients who were followed up longi-
tudinally in a specialized and tertiary neurometabolic 
/ movement disorder clinic were examined. The inclu-
sion criterion was the diagnosis of a paediatric-onset 
(≤ 18  years of age) MD or combination of MDs includ-
ing chorea, athetosis, dystonia, tremor, myoclonus, par-
kinsonism, cerebellar ataxia and spasticity as the main 
clinical sign(s) with unrevealing etiologies after exten-
sive investigations. Such investigations included neu-
roimaging studies (Magnetic Resonance Imaging of the 

brain) and neurometabolic workup such as blood for 
lactate, gas, ammonia, amino acid, acylcarnitine pro-
file, cholestanol, creatine, guanidinoacetate, lipid profile, 
vacuolated lymphocytes, lysosomal enzymes, biotinidase, 
copper, caeruloplasmin, very long chain fatty acids, pris-
tanic and phytanic acids, vitamin E, total homocysteine, 
manganese, urate, iron profile; and urine for amino acid, 
organic acid, creatine, guanidinoacetate, purine and pyri-
midines, oligosaccharides and glycosaminoglycans. Cer-
ebrospinal fluid (CSF) for routine microscopy, glucose, 
protein, amino acids, lactate and neurotransmitter pro-
filing were performed in 23 patients (74%). The reasons 
for not performing lumbar puncture include decline by 
the families or the results of WES were already available. 
Targeted gene sequencing was performed for patients 
with a clearly abnormal biochemical and / or radiological 
phenotype suggestive of a neurometabolic disorder. The 
exclusion criterion was disorders with acquired or other 
secondary causes such as cerebral palsy (CP) with a clear 
history of brain insult, malformation of cortical develop-
ment, or brain tumors. A cohort of 31 patients from 30 
families (patient 6 and 7 are siblings) was finally recruited 
into our present study.

Genetic analyses
Genomic DNA were extracted from peripheral blood 
using Flexigene DNA Kit (Qiagen GmbH, Germany). 
Quality of genomic DNA was evaluated by agarose gel 
analysis and quantity was measured by Qubit® dsDNA 
assay (Thermo Fisher Scientific, Waltham, MA).

WES was performed in Genome Diagnostics Nijmegen 
and our local setting (HKU). WES and the data analy-
sis in Genome Diagnostic Nijmegen were performed 
as described previously [13]. In our local setting, WES 
was performed as described in our previous study [34]. 
Exome libraries preparation and quality control were 
performed according to the manufacturer instruc-
tions. The libraries were sequenced by Illumina HiSeq 
1500 or NextSeq 500 sequencing platform with a tar-
geted sequencing coverage of 100x. Data processing has 
been done by our in-house developed bioinformatics 
pipeline. Briefly, filtered raw reads were mapped to the 
reference human genome (GRCh37/hg19) by Burrow-
Wheeler Aligner (BWA) 0.7.10. Genome Analysis Toolkit 
(GATK) best practices v3.4-46 was used for variant call-
ing by HaplotypeCaller and the variants were anno-
tated by Annotate Variation (ANNOVAR). First-tier 
variant analysis was based on a virtual gene panel con-
sist of 272 movement disorder-related genes (Additional 
file 1:  Table 1), 244 mitochondrial disease-related genes 
(Additional file  1:  Table  2) and genes in MitoCarta 2.0 
encoding protein with strong support of mitochondrial 
localization (http://www.broad insti tute.org/pubs/MitoC 

http://www.broadinstitute.org/pubs/MitoCarta
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arta). Even though patients with clinical suspicion of a 
mitochondrial disorders were excluded, the analysis also 
included mitochondrial-related genes as the phenotypic 
presentation for both movement and mitochondrial dis-
orders are highly overlapping. If pathogenic variant(s) 
could not be identified in these genes, open-exome analy-
sis will be performed. Some of the data was jointly analy-
sis by collaborators at Yale University. Raw WES data 
from HKU was transferred. Reads were aligned to hg19 
reference genome using bwa-mem and processed accord-
ing to the GATK best practice guidelines. Copy-number 
variants (CNV) were called using gcnv (part of GATK4). 
The variants were annotated using Variant Effect Pre-
dictor through Hail and then uploaded to seqr (https ://
seqr.broad insti tute.org/) for analysis. Rare variants were 
assessed for pathogenicity based on the American Col-
lege of Medical Genetics (ACMG) guideline [35]. Poten-
tial disease-causing variants and segregation analysis 
were performed by Sanger sequencing.
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