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Background: Tuberous sclerosis complex (TSC) is a genetic disorder that cause tumors to form in many organs.
These lesions may lead to epilepsy, autism, developmental delay, renal, and pulmonary failure. Loss of function
mutations in TSCT and TSC2 genes by aberrant activation of the mechanistic target of rapamycin (mTORCT)
signaling pathway are the known causes of TSC. Therefore, targeting mTORC1 becomes a most available
therapeutic strategy for TSC. Although mTORCT inhibitor rapamycin and Rapalogs have demonstrated exciting
results in the recent clinical trials, however, tumors rebound and upon the discontinuation of the mTORCI
inhibition. Thus, understanding the underlying molecular mechanisms responsible for rapamycin-induced cell
survival becomes an urgent need. Identification of additional molecular targets and development more effective
remission-inducing therapeutic strategies are necessary for TSC patients.

Results: We have discovered an Mitogen-activated protein kinase (MAPK)-evoked positive feedback loop that
dampens the efficacy of mTORC1 inhibition. Mechanistically, mTORC1 inhibition increased MEK1-dependent
activation of MAPK in TSC-deficient cells. Pharmacological inhibition of MAPK abrogated this feedback loop
activation. Importantly, the combinatorial inhibition of mMTORC1 and MAPK induces the death of TSC2-deficient cells.

Conclusions: Our results provide a rationale for dual targeting of mTORC1T and MAPK pathways in TSC and other
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Background

Tuberous sclerosis complex (TSC) is a genetic disorder
that is associated with tumors to form in many organs,
primarily in the brain, eyes, heart, kidney, skin and lungs
[1]. These lesions cause morbidity and mortality in pa-
tients with TSC, as they may lead to epilepsy, autism,
developmental delay, renal, and pulmonary failure [2].
Loss of function mutations in TSCI and TSC2 genes are

* Correspondence: yuj9@ucmail.uc.edu

'Department of Internal Medicine, Pulmonary, Critical Care and Sleep
Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin
Way-ML 0564, Cincinnati, OH 45267, USA

Full list of author information is available at the end of the article

B BMC

the known causes of TSC. The TSC1 and TSC2 gene
products combine with TBC1D7 to form a ternary com-
plex which have GTPase activating protein (GAP) activ-
ity for the GTPase Ras homologue enriched in brain
(Rheb), therefore inhibiting mTOR complex 1
(mTORC]1) kinase activity [3, 4]. Therefore, Targeting
mTORCI1 becomes a most available therapeutic strategy
for TSC.

The mechanistic target of rapamycin (mTOR) is a
serine/threonine protein kinase that regulates cell
growth, proliferation, cell motility, cell survival, protein
synthesis, autophagy, and transcription [5]. The mTOR
functions as a catalytic subunit in two distinct
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multiprotein complexes, mMTORC1 and mTORC2 [6].
mTORCI1, a complex including regulatory-associated
protein of mMTOR (RAPTOR), phosphorylates and con-
trols, at least, two regulators of protein synthesis, the
40S ribosomal protein subunit S6 kinase (S6K) and the
translational repressor 4E-binding protein 1, referred as
4E-BP1. mTORC2, characterized by rapamycin-
insensitive companion of mTOR (RICTOR), phosphory-
lates several AGC protein kinases, including AKT at
Ser473. Deregulation of mTORC1 has been observed
with various human diseases [7]. Thus, this renders
mTORCI as an attractive drug target for cancer therapy.
Although mTORC]1 inhibitors showed very convincing
results in some TSC clinical studies, tumors or lung
function returned to their original states when drugs
were discontinued, addressing the cytostatic instead of
cytotoxic effects of mTORCI inhibition [8—10]. Thus,
there is an urgent need to identify additional molecular
targets and develop novel combinatorial therapies with
mTORCI inhibitors that could render tumor cell death.

To explore the possibility of selectively killing tumor
cells with high mTORC1 activity, we performed bio-
informatic analysis and identified signaling pathways that
were activated in response to rapamycin treatment, in-
cluding focal adhesion, adherent junction, Jak-Stat, and
MAPK signaling pathways. Recently, the FAK inhibitor
and JAK-STAT inhibitor have shown benefits in
mTORC1 inhibitor-resistant pancreatic cancer and
breast cancer, respectively [11, 12]. MAPK inhibitors
have been studied with a synergistic effect with mTOR
inhibitors in several cancers [13, 14]. However, the
mechanism of MAPK inhibitor-attenuated resistance to
mTORCI inhibition in cancers and especially in TSC
have not been extensively explored.

Here we report that mTORC1 inhibition results in a
compensatory activation of MAPK signaling pathway in
TSC-deficient cells in vitro. This enhanced MPAK sig-
naling pathway was associated with enhanced survival of
TSC-deficient cells. Pharmacological suppression of
MEK1/2-MAPK sensitized TSC-deficient cells to cell
death. Taken together, our study reveals a novel ap-
proach of combined suppression of pro-survival signal-
ing pathways that informs future preclinical studies and
potential clinical application of remission-inducing ther-
apies for TSC and other mTOR1 hyperactive neoplasms.

Results

MAPK signaling pathway is activated in response to
rapamycin treatment

To explore the possibility of selectively killing tumor
cells with high mTORC1 activity, we performed bio-
informatic analysis using various tumor cells including
TSC1 and TSC2-deficient cells (GEO accession number
GSE16944 [15], GSE21755 [16], GSE5332 [17],
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GSE27982 [18], GSE28021 [18], GSE67529, GSE28992
[19], GSE18571 [20], GSE7344 [21], GSE37129 [22] and
GSE17662 [23]) (Fig. 1a). Gene set enrichment analysis
identified top 10 up-regulated signaling pathways in
resposne to rapamycin treatment that were conserved in
all cell types analysed (Fig. 1b). MAPK signaling pathway
is one of the upregulated pathways induced by rapamy-
cin treatment. Other rapamycin-upregulated pathways
include axon guidance, notch signaling pathway, small
cell lung cancer, adherent junction, B cell receptor sig-
naling pathway, chemokine signaling pathway, ECM re-
ceptor interaction, focal adhesion, and JAK/STAT
signaling pathway.

Tsc2-deficient xenograft tumors become refractory to
rapamycin treatment

To determine the in vivo efficacy of rapamycin on tumor
growth, we first generated xenograft tumors of Tsc2-
deficient Eker Rat uterine leiomyoma-derived luciferase-
tagged cells [24—26]. The tumor growth was recorded by
non-invasive imaging. Rapamycin treatment for one-week
resulted in drastic decrease of tumor volume dramatically
due to one-week rapamycin treatment. However, tumor
rebounded rapidly despite rapamycin treatment was contin-
ued for 1 week (Fig. 2a). The tumor growth was monitored
for 5 weeks during rapamycin treatment. Interestingly,
xenograft tumors persistently progressed from week 2 of
the treatment (Fig. 2b). By week 5 of rapamycin treatment,
tumors became ulcerated and reached the study endpoints.
We performed immunohistochemistry using cell prolifera-
tive marker proliferating cell nuclear antigen (PCNA) and
found that rapamycin-treated xenograft tumors exhibited
high levels of nuclear PCNA staining, comparable to those
detected in control tumors (Fig. 2c), indicating that rapa-
mycin does not affect cell proliferative status. To determine
the effect of rapamycin on tumor cell death, TUNEL stain-
ing was performed in the same set xenograft tumor speci-
mens used for PCNA staining. We did not observe positive
TUNEL staining in xenograft tumors of control vehicle-
treated or rapamycin-treated mice (Fig. 2c), indicating that
rapamyicn does not induce the death of tumor cells. To as-
sess the effect of rapamycin on mTORCI inhibition in
xenograft tumors, we performed immunoblotting analysis
and found that S6 phosphorylation was markedly decreased
in response to rapamycin treatment in xenograft tumors
relative to vehicle control (Fig. 2d). Collectively, our data
show that long-term effective inhibition of mTORC1 by
rapamycin promotes tumor refractory growth in TSC.

Rapamycin is cytostatic but not cytotoxic in TSC2-
deficient cells in vitro

To determine whether rapamycin affects cell prolifera-
tion and death in vitro, we use TSC2-deficient patient-
derived cells [27, 28], Tsc2-deficient rat uterine
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Fig. 1 Bioinfomatic analysis of rapamycin enhanced signaling pathway in TSC deficient cells. a Publically available gene expression datasets were
re-analyzed. b Gene set enrichment analysis was performed. Top 10 upregulated signaling pathways in response to rapamycin treatment relative

leiomyoma-derived cells [24, 25], and Tsc2”/ p53~/~
mouse embryonic fibroblasts (MEF) and their TSC2-
exressing counterpart controls [29]. Crystal Violet staining
showed that rapamycin treatment up to 96h (1nM to
100 nM) significantly decreased cell proliferation relative
to vehicle control (Fig. 3a). Phase-contrast microscopy
showed rapamycin slowed the growth of TSC2-deficient
cells without inducing the death of TSC2-deficient
patient-derived cells, rat uterine-leilomyoma-derived cells,
or Tsc2”'~ MEFs (Fig. 3b). Furthermore, Propidium iodide

exclusion assay showed that rapamycin treatment (1 nM —
100 nM) did not induce the death of TSC2-deficient
patient-derived 621-101 cells (Fig. 3c). Collectively, our
data demonstrate that rapamycin exhibits cytostatic effect
but not cytocidal effect on TSC2-deficient cells in vitro.

Rapamycin promotes MAPK activation in mTORC1-
hyperactive tumor cells in vitro

Our bioinformatic analysis identified activation of MAPK
signaling pathway genes in a panel of TSC-deficient cells
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Fig. 2 Tsc2-deficient xenograft tumors become refractory to rapamycin treatment. a Female CB17-scid mice were inoculated with ELT3-luciferase
cells subcutaneously. Mice were treated with either vehicle or rapamycin for 5 weeks. b Bioluminescent intensity in xenograft tumors was
recorded and quantified weekly. The left Y-axis indicated the relative tumor growth versus the baseline quantification before drug treatment. ¢
Immunohistochemistry staining of PCNA and TUNEL. d Immunoblotting analysis of phospho-S6 (5235/236) of xenograft tumors
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(Fig. 1). To further assess the MAPK activation, we per-
formed immunoblotting analysis of MAPK phosphorylation
in TSC2-deficient patient-derived cells, Tsc2-deficient rat
uterine-leiomyoma-derived cells, Tsc2”'~ mouse embryonic
fibroblast (MEFs), and TscI”/~ MEFs, and their TSC2- or
TSC1-reexpressing counterparts cultured in nutrient-rich
medium containing 10% FBS or nutrient-deprived FBS-free
medium, repersenting two basal levels of MAPK phosphor-
ylation. We found that rapamycin selectively promoted
MAPK phosphorylation in TSC1- or TSC2-deficient cells
but not in TSCI1- or TSC2-reexpressing cells (Fig. 4a-d).
We also observed that rapamycin treatment decreased S6
phosphorylation as expected.

Dual inhibition of mTORC1 and MAPK induces the death
of TSC2-deficient patient-derived cells in vitro

To test whether dual inhibition of mTORC1 and MAPK
synergistically affects cell survival, we first examined cell
viability using crystal violet staining. Rapamycin single
treatment decreased the viability of TSC2-deficient
patient-derived cells (Fig. 5a), but not TSC2-
reexpressing cells (Fig. 5b). Importantly, dual treatment
of rapamycin and CI-1040, an MEK1/2 inhibitor, signifi-
cantly decreased the viability of TSC2-deficient cells, and
moderately reduced the viability of TSC2-reexpressing
patient-derived cells, relative to rapamycin treatment alone
(Fig. 5a, b). However, rapamycin plus AZD6244, an MEK1
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Fig. 3 Rapamycin is cytostatic but not cytotoxic in vitro. a Cell proliferation of TSC2-deficient patient-derived cells treated with escalating
concentrations of rapamycin. b Phase contrast microscopy of TSC2-deficient patient-derived, rat uterine leiomyoma-derived, Tsc2/~ MEFs and
Tsc1™~ MEFs treated with rapamycin. ¢ Propidium iodide exclusion assay of TSC2-deficient patient-derived cells treated with escalating
concentrations of rapamycin as indicated. ** P < 0.01, the Student’s t-test

inhibitor, did not affect the viability of TSC2-deficient or
TSC2-reexpressing patient-derived cells (Fig. 5a, b), indica-
tive of a differential effect of MEK1/2 and MEK1 on cell
viability in TSC2-deficient patient-derived cells.

To determine the combinatorial effect of rapamycin and
MEK1/2 inhibitor on cell survival, we preformed Propi-
dium iodide exclusion assay and found that CI-1040 in
combination with rapamycin substantially induced cell
death relative to rapamycin treatment in TSC2-deficient
and TSC2-reexpressing patient-derived cells (Fig. 5¢, d).
AZD6244 in combination with rapamycin moderately

induced the death of TSC2-deficient and TSC2-
reexpresing patient-derived cells (Fig. 5¢, d), further indi-
cating the differentially effect of MEK1/2 and MEK1 on
the survival of TSC2-deficient patient-derived cells.

Discussion

The mTORCI is a serine/threonine protein kinase and
plays crucial roles in transcriptional regulation, initiation
of protein synthesis, ribosome biogenesis, metabolism, and
apoptosis. The deregulation of mTORCI signaling pathway
is frequently observed in cancers and other diseases due to
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aberrant expression of numerous oncogenes and tumor
suppressors [5, 30]. mTORCI signaling pathway has been
the key targets for cancer treatment [31-33]. Although
mTORCI inhibitors have activity in some cancer types,
only small population of patients treated with these agents
exhibited substantial clinical benefit [34].

mTOR1 pathway is the main therapeutic target for
TSC and LAM patients. mTORC]1 inhibitors, sirolimus
(rapamycin) and everolimus (RADO001), have been ap-
proved by FDA for the treatment of TSC-associated sub-
ependymal Giant cell astrocytoma in brain (everolimus)
[2, 35], renal angiomyolipoma (everolimus) [36], and
pulmonary lymphangioleiomyomatosis (sirolimus) [10].

Everolimus has also been approved for the treatment of
TSC-associated SEGA and renal angiomyolipoma [37].
Rapamycin (sirolimus) acts by forming complex with the
intracellular binding protein FK506-binding protein
(FKBP121), such complex in turn binds to the FKBP12-
rapamycin binding (FRB) domain of the mTORC1 mol-
ecule to inhibit mTORC1 activity [38, 39]. mTORC2
function is intact under acute inhibition, however, it has
been noted that long-term rapamycin treatment de-
creases mTORC2 signaling in primary human dermal
microvascular endothelial cells [40] and several cell lines
[41]. Everolimus, known as RADOO1, is a derivative of
sirolimus that acts via similar mechanism [42]. It shares
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the central macrolide chemical structure with sirolimus,
which allows for interaction with FKBP12 [43, 44]. The
tissue selectivity of everolimus has also been noted, pref-
erably accumulated in brain mitochondria relative to sir-
olimus [44].

Currently, there is no single study that directly com-
pares the therapeutic effect of sirolimus and everolimus
in TSC management [38, 44, 45]. Clinical decisions are
based on clinical trial experiences in the setting of cer-
tain TSC manifestations. Sirolimus is generally used to
manage TSC-LAM [10], while Everolimus is favored
over sirolimus in treating SEGA [44, 46]. Although our
current studies focus on the impact of rapamycin on
pro-survival of TSC mutant cells, it will be interesting to
examine the effect of everolimus on the survival of TSC
mutant cells.

Recently, the therapeutic benefit of cannabidiol has
been proposed in TSC associated epilepsy [47]. Cannabi-
diol is a marijuana plant extract that has been studied as
an anticonvulsant medicine for treatment-resistant epi-
lepsy with acceptable tolerance [48, 49]. Hess and

colleague observed decreased weekly seizure frequency
in TSC patients with refractory epilepsy under cannabi-
diol treatment. In addition to the fact that cannabidiol is
yet to be FDA approved, there is no conclusive evidence
supporting the effect of cannabidiol exceeding traditional
anti-seizure therapy such as the benzodiazepine, GABA
analog vigabatrin and ketogenic diet in the management
of TSC associated epilepsy [50—53]. Moreover, the speci-
ficity of cannabidiol to target the unique mechanism of
TSC pathogenesis has not been elucidated.

Preclinical studies including ours have demonstrated
the effectiveness of sirolimus, an mTORCI inhibitor, in
multiple animal models of TSC [26, 54—58]. The effect
of mTOR inhibitors on TSC tumors in these experi-
ments has been consistently cytostatic rather than cyto-
toxic, and is variable in efficacy; tumors typically regrow
upon the cessation of treatment [59, 60]. Therefore,
these preclinical models have become powerful tools in
the assessment of potential therapies for TSC. However,
the molecular mechanism of the sirolimus-induced cyto-
static effect on TSC tumors is not totally elucidated. Our
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recent study reported that xenograft tumors of Tsc2-
deficient rat uterine leiomyoma-derived ELT3 cells be-
came resistant to rapamycin treatment [61]. In this
study, we observed that xenograft tumors of ELT3 cells
potently responded to rapamycin within 1 week of treat-
ment, however, tumors became refractory from week 2
of rapamycin treatment. This rapamycin resistant growth
is consistent with the study by Valianou et al. [61]. In
our xenograft tumor study, we used bioluminescent im-
aging approach to quantify the tumor growth in re-
sponse to rapamycin treatment, enabling quantification
of viable tumor cells in vivo.

Treatment with sirolimus alone has a suppressive ra-
ther than remission-inducing effect in majority of tumor
models with dysregulated mTORC1 [62, 63]. mTORC1
inhibition leads to upregulation of pro-survival media-
tors including autophagy and paradoxically increases the
growth of Tsc2-null cells [58, 64—66]. Specifically, inhib-
ition of mTORC1 leads to MAPK pathway activation
through a PI3K-dependent feedback loop in human can-
cer [67]. Using bioinformatic approach and immunoblot-
ting analyses, we identified activation of MPAK signaling
pathway among other pro-survival pathways in a panel
of TSC-deficient cells, and rapid and sustained activation
of MAPK in TSC-deficient cells, in agreement with other
findings in prostate cancer cells [67].

High-throughput chemical screens in mTORCI1-
hyperactive patient renal angiomyolipoma-derived and
Tsc2™'~ MEFs cells identified compounds that selectively
induce cell death through oxidative stress-dependent
mechanisms within 72h of drug treatment [68, 69].
Thus, there is an unmet need for identifying agents that
act with chronic sirolimus treatment to kill mTORC1-
hyperactive cells. Our identification of rapamycin-
induced MAPK activation prompted us to perform stud-
ies of dual inhibition of MAPK and mTORC1 in TSC-
deficient cells. We found that MAPK inhibition attenu-
ated rapamycin-induced cytostasis and promoted the
death of TSC-deficient cells in vitro.

A potential mechanism by which active-site mTOR or
dual inhibitors of PI3K/mTOR promotes MEK1/2-
MAPK signaling pathway activation is via enhanced
EGFR activity. A recent RNAseq analysis by Valianou
et al. identified rapamycin-induced upregulation of
EGER signaling pathway in rapamycin-resistant ELT3
cells [61]. The EGER tyrosine kinase activity and affinity
for its ligands are negatively regulated by protein kinase
C (PKCa) via phosphorylation at Thr654 [70]. Studies
indicate that mTORC2 mediates PKCa phosphorylation
[71, 72]. Interestingly, the mTORC2-dependent phos-
phorylation of PKCa plays an important role in its mat-
uration, stability, and signaling [71, 72]. It is plausible,
therefore, that suppression of mTORC2-mediated post-
translational processing of PKCa interferes with negative
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feedback of PKCa on EGEFR, thereby leading to hyperac-
tivation of EGFR and activation of MAPK signaling in
response to EGFR agonists or GPCR transactivation
[73]. Future studies of the impact of EGFR-mediated
MAPK activation on the survival of mTROC1 hyper-
active cells will provide novel mechanistic targets for
therapeutic application for TSC.

Conclusions

In the past decade, remarkable progress has been made
in demonstrating the efficacy of sirolimus and everoli-
mus in management of TSC and LAM patients. Rapa-
mycin and Rapalogs that target mTOR activity offer an
additional value which would help in the treatment of
TSC and LAM. However, the effect of sirolimus and
everolimus on reducing tumor size or improving symp-
toms has been consistently cytostatic rather than cyto-
toxic; tumors typically regrow and symptoms resume
upon the cessation of treatment. In this study, we have
revealed that mTORCI inhibition using rapamycin re-
sults in a compensatory activation of MAPK in TSC1-
and TSC2-deficient cells. This enhanced MAPK signal-
ing pathway was associated with enhanced survival of
TSC-deficient cells in vitro. Dual inhibition of mTORC1
and MAPK triggers the death of TSC2-deficient cells.
Taken together, our study reveals a novel approach of
dual targeting of mTORC1 and MAPK pathways to in-
duce tumor remission in TSC and other mTORC1
hyperactive neoplasms.

Materials and methods

Gene set enrichment analysis

Re-analysis of publicly available expression array data
(GEO accession number GSE16944 [15], GSE21755 [16],
GSE5332 [17], GSE27982 [18], GSE28021 [18],
GSE67529, GSE28992 [19], GSE18571 [20], GSE7344
[21], GSE37129 [22] and GSE17662 [23]) was performed
using the online tool Gene Pattern (Broad Institute).

Cell culture and reagents

Cell culture media and supplements were from GIBCO
(Frederick, MD). Tsc2™' p53~'~ and Tsc2"*p53~~ mouse
embryonic fibroblasts (MEFs) were developed previously
[29]. Mouse expression arrays of Tsc2”/ p53~~ and
Tsc2"*p537'~ MEFs were preformed [16, 18]. An im-
mortalized TSC2-deficient human cell line derived from
angiomyolipoma of a LAM patient [28], and its corre-
sponding TSC2-rescued control cell line has been de-
scribed previously [15]. In brief, patient-derived cells were
transfected with pcDNA3.1zeo-hTSC2 or its correspond-
ing empty vector control pcDNA3.1zeo. Stable clones ex-
pressing TSC2 were selected using Zeocin for 2 weeks as
described previously [74]. Eker rat uterine leiomyoma-
derived Tsc2-deficient cells (ELT3) were developed by



Lu et al. Orphanet Journal of Rare Diseases (2020) 15:209

Howe et al. [24, 25]. ELT3 cells were transduced with a
retroviral plasmid pMSCVneo-hTSC2 or its correspond-
ing empty vector pMSCVneo, and then selected with neo-
mycin for 2 weeks. Stable clones were characterized for
TSC2 expression [75]. Cells were cultured in DMEM sup-
plemented with 10% fetal bovine serum (FBS), and 1%
penicillin-streptomycin-amphotericin B (PSA). Experi-
ments were performed in triplicate for biochemical ana-
lyses. Cells were seeded at a density of 2 x 10° cells/ml in
6-well plates in regular growth media for 24 h. Six or 24 h
later, cell lysates were prepared using RIPA buffer supple-
mented with protease inhibitor cocktail (Sigma) and phos-
phatase inhibitor cocktail (Sigma). Protein concentration
was determined using Bradford assay (BioRad Laborator-
ies Inc. Hercules, CA).

Cell viability assay

Cells were seeded at a density of 5x 10*/ml in a 96-well
plate for 24h and then treated with inhibitors or vehicle
control for 24h. Cell numbers were quantified using
CyQuant (Invitrogen, Carlsbad, CA) or crystal violet staining
assay. Values are expressed as mean + SEM; # = 8/group.

Animal studies

The University of Cincinnati Institutional Animal Care
and Use Committee approved all procedures described
according to standards as outlined in The Guide for the
Care and Use of Laboratory Animals. For xenograft
tumor study, 2 x 10° ERL4-luciferase-tagged (TSC2-null)
cells were inoculated bilaterally into the posterior back
region of female intact CB17-SCID mice (Taconic) as
previously described [26, 76]. For the current study, 9-
10 week-old CB-17 SCID mice were treated with vehicle
control or 2 mg/kg rapamycin (dissolve in 0.25% Tween
80, 0.25% polyethylene glycol 400, i.p.) every day for 3
weeks. The tumors were harvested 3 weeks post cell in-
oculation. Tumor growth were monitored weekly using
a non-invasive imaging by IVIS (Perkin Elmer). All ef-
forts were made to reduce suffering of the animals and
minimize the number of animals used in the study.

Bioluminescent reporter imaging

Ten minutes before imaging, animals were injected with
luciferin (Xenogen) (120 mg/kg, i.p.). Bioluminescent sig-
nals were recorded using the Xenogen IVIS System. The
total photon flux of tumors was analyzed [26].

Immunohistochemistry

Immunohistochemistry (IHC) was performed on
paraffin-embedded 10 um-sections. Slides were deparaf-
finized, and antigen retrieval was performed using Dako
Target Retrieval Solution pH 6 (Dako, Carpinteria, CA).
Sections were stained by the immunoperoxidase tech-
nique using DAB substrate (Dako EnVision System
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HRP) and counterstaining with hematoxylin. After stain-
ing, slides were viewed on a Nikon Eclipse E400 micro-
scope, and images captured using Spot Insight digital
camera with Spot software (Diagnostic Instruments,
Sterling Heights, MI).

Western blotting

Protein samples were analyzed by SDS-PAGE using 4—
12% NuPAGE Gel (Invitrogen, Carlsbad, CA), and trans-
ferred to a nitrocellulose membrane. Immunoblotting
was performed by standard methods using HRP-
conjugated secondary antibodies, and chemilumines-
cence using Supersignal West Pico Chemiluminescent
substrate (Thermo Scientific) and exposure using Syn-
gene G:Box. All antibodies were purchased from Cell
Signaling (Danvers, MA).

Statistical analyses

All data are shown as the mean + S.E.M. Measurements
at single time points were analyzed by ANOVA and then
using a two-tailed t-test (Student’s t test). Time courses
were analyzed by repeated measurements (mixed model)
ANOVA and Bonferroni post-t-tests. All statistical tests
were performed using GraphPad Prism 5.0 (GraphPad
Software, San Diego, CA, USA) and p <0.05 indicated
statistical significance.
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