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Ketogenic treatment reduces the
percentage of a LHON heteroplasmic
mutation and increases mtDNA amount of
a LHON homoplasmic mutation
Sonia Emperador1,2,3†, Ester López-Gallardo1,2,3†, Carmen Hernández-Ainsa1,2, Mouna Habbane1, Julio Montoya1,2,3,
M. Pilar Bayona-Bafaluy1,2,3* and Eduardo Ruiz-Pesini1,2,3,4*

Abstract

Background: The vision loss in Leber hereditary optic neuropathy patients is due to mitochondrial DNA mutations.
No treatment has shown a clear-cut benefit on a clinically meaningful end-point. However, clinical evidences suggest two
therapeutic approaches: the reduction of the mutation load in heteroplasmic patients or the elevation of mitochondrial
DNA amount in homoplasmic patients.

Results: Here we show that ketogenic treatment, in cybrid cell lines, reduces the percentage of the m.13094 T > C
heteroplasmic mutation and also increases the mitochondrial DNA levels of the m.11778G > A mitochondrial genotype.

Conclusions: These results suggest that ketogenic diet could be a therapeutic strategy for Leber hereditary optic
neuropathy.
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Background
Leber hereditary optic neuropathy (LHON) is a kind of
blindness due to retinal ganglion cells (RGC) loss pro-
voked by pathologic mutations in the mitochondrial DNA
(mtDNA), mainly in genes for respiratory complex I (CI)
subunits. Three of these mutations, m.3460G > A,
m.11778G >A and m.14484 T > C, account for most of
LHON patients. The remaining cases are caused by a
number of very rare mutations, such as m.13094 T > C [1].
The existence of mutant and wild-type mtDNA,

known as heteroplasmy, is found in 10–15% of individ-
uals [2]. Blood mutation load in these heteroplasmic in-
dividuals is directly related to the frequency of vision
loss [3]. Heteroplasmy is frequent in patients who re-
cover their vision. The lower the percentage of patho-
logical mutation, the higher the probability of
spontaneous recovery [4]. Interestingly, it was previously

reported that osteosarcoma 143 cybrids with an hetero-
plasmic 1.9 kb mtDNA deletion grown 5 days in a
medium with no glucose but with acetoacetate (AA), β-
hydroxybutyrate (BHB) or both (AA + BHB) suffered a
slight decrease (7–20%) in proportion of deleted mtDNA
[5]. The result of this ketogenic treatment suggested a
possibility to decrease the LHON pathologic point muta-
tion load in heteroplasmic patients.
Most LHON individuals are homoplasmic, i.e. they

only have mutant mtDNA, and mutation load cannot be
decreased. However, not all individuals harboring a
LHON homoplasmic mutation suffer the disease. In mu-
tant homoplasmic individuals, mtDNA levels were found
to be lower in patients than in healthy carriers [6].
Moreover, risk factors for LHON, whether genetic, such
as mtDNA haplogroup J; physiological, such as male
gender; pharmacological, for example antiretroviral ther-
apy; or environmental, such as smoking, have also been
associated with lesser mtDNA amount [7]. Remarkably,
it has also been shown that neuroblastoma SH-SY5Y
cybrids with an almost homoplasmic (98.6%) pathologic
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point mutation (m.3243A > G) showed an increase in the
mtDNA copy number, with no change in the mutation
load, when cultured for 28 days in a medium with ketone
bodies and low glucose [8]. This result suggested that
ketogenic diet (KD), a high fat and low carbohydrate
diet, by increasing mtDNA levels, might also be a thera-
peutic strategy for LHON homoplasmic individuals.
Currently, there are no level I clinical trial data sup-

porting the use of any medication in LHON. Education
and a reduction of all the likely risk factors are the bed-
rock of management in LHON [9]. To explore the use
of KD as a potential therapy for LHON patients, we sim-
ulated this approach in heteroplasmic and homoplasmic
cybrids, trying to decrease LHON mutation load or in-
creasing the mtDNA copy number.

Results
Reducing the heteroplasmic mutation percentage
In a previous work, we described a LHON patient with
the m.13094 T > C mtDNA transition and confirmed its
pathogenicity using cybrids [1]. These cybrids (O13094)
harbored a 50.3% of the mutant allele. Here, we ob-
served a significant decrease in the proportion of
m.13094 T > C transition when cybrids were grown with
no glucose in the presence of AA (up to 27.7%) or BHB
(up to 30.7%) (Fig. 1a, b). Interestingly, AA + BHB fur-
ther reduced the mutation load (up to 16.7%).
Moreover, when cybrids with a 20% mutation load

were cultured for additional 6 or 12 days in a medium
with no glucose but with AA + BHB, they practically lost
the m.13094 T > C transition (Fig. 1c). A different type of

Fig. 1 Effect of ketogenic treatment on mtDNA mutation percentage and copy number. a Percentage of m.13094 T > C transition. Gel showing
PCR-RFLP results for cybrids with the m.13094 T > C mutation. M, molecular weight marker; Am, amplicon; C-, negative control; G, 5.5 mM glucose
grown mutant cybrid; A, 5 mM acetoacetate-treated mutant cybrid; B, 5. mM β-hydroxybutyrate-treated mutant cybrid; AB, 5 mM acetoacetate +
5mM β-hydroxybutyrate-treated mutant cybrid. Heteroplasmy produces two new bands (218 + 188 base pairs). b Graph showing percentage of
m.13094 T > C mutation in cybrids. These percentages were obtained from the Fig. 1a gel. Statistically significant differences are indicated by * (vs
G) or # (vs A or B). c Percentage of m.13094 T > C transition. Gel showing PCR-RFLP results for m.13094 T > C mutation, in fibroblast and cybrids,
after additional ketogenic treatment. G6 and G12, cybrids with 20% mutation load grown in G medium for additional 6 and 12 days, respectively.
AB6 and AB12, cybrids with 20% mutation load grown in AB medium for additional 6 and 12 days, respectively. d ATP levels in cybrids with
different m.13094 T > C mutation load. Dashed line represents ATP levels in the Owth control cybrid. Statistically significant differences are
indicated by * (vs Owth), & (vs O13094, 0%), or # (vs O13094, 20%). e mtDNA levels in wild-type and LHON mutant cybrids. mtDNA amount in
each untreated cybrid is considered 100% (dashed line). Statistically significant differences are indicated by * (vs untreated cybrid).
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cell, patient’s fibroblasts (70.5%) mutation load), also
showed a reduction in the mutation load when grown in
AA + BHB (up to 40%) (Fig. 1c).
To study the bioenergetic effect of the reduction in

the mutation percentage, we determined the ATP levels.
These levels were significantly lower in cybrids with a
50% of pathological mutation than in those with a 20%
(Fig. 1d). ATP amount in both cybrids was significantly
lower than that in their isogenic control, with the same
mtDNA genotype except for the pathological mutation.
ATP concentration was the same in the isogenic cybrid
and a control cybrid from another haplogroup and with
no pathological mutation. Thus, the decrease in the
cybrid mutation load was associated with an increase in
ATP amount to reach normal levels (Fig. 1d).

Increasing the homoplasmic mutant mtDNA levels
We had previously observed an inverse relationship be-
tween the percentage of m.13094 T > C mutation and
the mtDNA copy number [1]. The ketogenic treatment
(no glucose and AA + BHB) decreased the mutation per-
centage but also increased mtDNA amount.
To explore the effect of ketogenic treatment on

mtDNA levels of LHON homoplasmic mutant cells, we
analyzed five osteosarcoma 143B cybrid cell lines: two
free of pathological mutations (Owth and Owtj) and
three carrying the most common LHON mutations
(O3460J, O11778J and O14484J). We had previously
confirmed that all three mutant cybrids are homoplas-
mic, and along with Owtj, share the same nuclear gen-
etic background and belong to the same mtDNA genetic
background, haplogroup J [10]. Here, we first analyzed
16 short tandem repeats (STR) and confirmed that Owth
also shares the same nuclear genetic background than
the previous cybrids, but it belongs to the most common
European mtDNA genetic background, haplogroup H
(GenBank HM103354.1).
Next, we determined their mtDNA levels after 7 days

growing in no glucose, AA + BHB containing medium.
Treated cybrids tent to have higher mtDNA levels
(Fig. 1e). Moreover, treated O11778J cybrids showed sig-
nificantly higher mtDNA levels (Fig. 1e). In osteosar-
coma 143B cybrids, we previously described that
mtDNA amount determines OXPHOS capacity [11].

Discussion
The O13094 heteroplasmic cybrid, when grown in no
glucose medium with AA and/or BHB, decreases its mu-
tation load. A similar observation had been previously
published [5]. The reduction in the percentage of
m.13094 T > C transition may be due to a selection of
healthier mitochondria or cells. In fact, it had been de-
scribed a significant negative correlation between the
percentage of m.13094 T > C mutation and the CI

activity [12], which would explain our observation of an
increase in ATP concentration when the mutation level
is reduced. The catabolism of AA and BHB requires
mitochondrial tricarboxylic acid cycle and oxidative
phosphorylation (OXPHOS). Moreover, by reducing glu-
cose concentration and limiting glycolysis, cells become
more dependent on mitochondria to obtain energy. In
fact, apparently homoplasmic SH-SY5Y cybrids reduced
the m.3243A > G mutation load to 90% when its growth
medium was shifted from high (25 mM) to low (2.75
mM) glucose [13]. Thus, the growing medium that we
use probably selects for less mutated mitochondria or cells.
It has been reported that, beside their metabolic effects, ke-
tone bodies have also other properties, such as gene expres-
sion regulation [14]. These other properties could be
responsible for the larger decrease in mtDNA mutation
load when AA + BHB, instead AA or BHB, are used.
The homoplasmic cybrid O11778J significantly in-

creases its mtDNA levels when growth in no glucose
medium with AA + BHB. Although no significant, the
remaining cybrids show a similar tendency. As previ-
ously commented, glucose deprivation requires a cellular
energetic shift from glycolysis to OXPHOS. Cells can
also grow on galactose medium but must derive much
of their energy from OXPHOS [15]. In fact, aerobic oxi-
dation of glutamine provides most of the energy when
galactose is the carbohydrate in the growing medium
[16]. Thus, it was reported that human cervical cancer
HeLa and osteosarcoma U2OS cells increased respir-
ation when glucose 25mM was substituted by glucose-
free/galactose 10 mM growing media [17, 18]. The
higher oxygen consumption in these cells was accom-
panied by densely packed mitochondrial cristae, in-
creased supercomplex activities and levels and
enrichment in respiratory complex proteins [17, 18]. In
HeLa cells growing in galactose medium, a non-
significant increase in mtDNA levels was observed [17].
Control and LHON osteosarcoma 143B cybrids showed
an increase in mtDNA amount and MT-CO1 and MT-
ND5 mRNA levels after incubation in glucose-free/gal-
actose 5 mM medium [19]. The reduction of glucose
concentration, from 30 to 5.5 mM, also increased oxygen
consumption and mtDNA copy number in HepG2 cells
[20]. Human neuroblastoma SH-SY5Y cybrids showed
increased oxygen consumption, CI activity, p.MT-CO2
subunit amount and mtDNA levels when glucose con-
centration was decreased from 25 to 2.75 mM [21]. Re-
duction in glucose concentration from 25 to 1 mM
increased oxygen consumption in U2OS cells [18]. Hu-
man hepatocellular carcinoma HepG2 cells growing in
absence of glucose showed an increase in CIV activity,
mtDNA-encoded proteins and mRNAs and mtDNA
amount versus cells growing at glucose 25mM [22].
Additionally, it has been shown that KD induces
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mitochondrial biogenesis [23–28], frequently accompan-
ied by increased mtDNA amount [8, 29–31]. It is im-
portant to remark that we have compared mtDNA levels
in cybrids grown in medium with AA + BHB but no glu-
cose, with those grown in glucose 5.5 mM. Therefore,
the elevation in mtDNA levels when glucose concentra-
tion is reduced from 25mM to 5.5 mM or no glucose
(but with AA + BHB) probably masked a lower effect of
AA + BHB on mtDNA amount. Thus, mitochondrial
biogenesis and OXPHOS function, and their surrogate
marker mtDNA copy number, increase with glucose
deprivation, both in wild-type and mutant cells.
In mouse, a positive and significant correlation was

found between mtDNA levels and uncoupled oxygen
consumption in Lewis lung carcinoma LL/2-m21 cybrids
[32]. In human, we had found that mtDNA copy number
was lower in Western Europe haplogroup J than H
osteosarcoma 143B cybrids [11]. These lower mtDNA
levels were accompanied by lower mitochondrial RNA
amount, significant decrease in mitochondrial protein
synthesis, reduction in mitochondrial inner membrane
potential and ATP levels. Moreover, mtDNA levels sig-
nificantly and positively correlated with mitochondrial
RNA levels, mitochondrial protein synthesis and mito-
chondrial inner membrane potential [11]. It was also
found that mtDNA copy number was higher in East Asian
macrohaplogroup M than N osteosarcoma 143B cybrids
[33]. These higher mtDNA levels were accompanied by
higher mitochondrial RNA amount, significant increases
in respiratory complex III levels, rise in mitochondrial
oxygen consumption and in NAD+/NADH ratio [33]. It
was also reported that, after estradiol treatment, control
and LHON (m.3460G >A, m.11778G > A and m.14484
T > C) mutant osteosarcoma 143B cybrids increased
mtDNA copy number, oxygen consumption and mito-
chondrial inner membrane potential [19]. Moreover,
estradiol-treated control and m.3460G >A cybrids in-
creased MT-CO1 and MT-ND5 mRNA levels and p.MT-
ND6 polypeptide amount [19]. Estradiol-treated control
and m.11778G > A cybrids increased total ATP cellular
content [19]. All these results confirm that mtDNA
amount largely determines the OXPHOS function and
could explain why risk factors for LHON have been asso-
ciated with lesser mtDNA amount [7], and why higher
mtDNA levels protect against LHON mutations, as re-
ported in healthy homoplasmic LHON mutation carriers
[6, 34]. Perhaps, mutant proteins are partially actives or,
maybe, they can be found in an active/inactive dynamic
equilibrium. In both cases, higher mutant protein amount
would imply higher activity.
KD was used in children with epilepsy and OXPHOS

defects, most of them in CI, the one affected in LHON
patients. This diet was a safe and effective therapy for
these patients [35]. KD was applied to a young girl

suffering Alpers-Huttenlocher syndrome due to a patho-
logical mutation in the mtDNA polymerase gamma. This
syndrome causes mtDNA depletion and defective
OXPHOS function. She clinically improved [36]. KD has
been also applied to two patients with mtDNA point
mutation, provoking clinical improvement [37, 38].
However, KD effects on mitochondria were not analyzed
in any of these patients. On the other hand, KD has not
been used in LHON patients, but LHON patients suffer
from RGC loss and, in rodent models of RGC damage, it
was shown that KD have a RGC neuroprotective effect,
preserving its structure and function, increasing mito-
chondrial respiration and up-regulating mitochondrial
biogenesis [39, 40].

Conclusions
Mitochondrial biogenesis is a potential therapeutic target
for LHON [7, 41], and our results suggest that KD might
be effective for heteroplasmic and homoplasmic LHON
patients.

Methods
Cybrids were generated by fusing osteosarcoma 143B
cells with mitochondria but no mtDNA, rho0 cells, to
platelets, with mitochondria and mtDNA but no nucleus
or nuclear DNA (nDNA), from three homoplasmic
(m.3460G > A, m.11778G > A and m.14484 T > C)
LHON patients, one heteroplasmic (m.13094 T > C)
LHON patient and two control individuals, according to
previously described protocols [42]. These cells should
share the nDNA and the growing conditions and should
differ in their mtDNA genotype. Institutional review
boards of all participating centers approved this study
(CEICA CP-12/2014). Informed consent was obtained
from all subjects.
Growing media were DMEM supplemented with 10

mM HEPES, 4 mML-glutamine, 1 mM sodium pyruvate,
10% fetal bovine serum (FBS) and 25 mM (high glucose-
HG); 5.5 mM (low glucose- LG); or no glucose (NG). In
KD, fatty acids are used in liver to produce ketone bod-
ies, mainly AA and BHB. Cybrids and fibroblasts were
defrosted and grown in HG medium during 3 days and
passed to LG medium for another 2 days. Then, we
seeded 1 × 106 cells from each cell line in 100 mm-plates
with LG medium. Next day, the medium was changed to
LG medium plus 50 μg/ml uridine or NG medium plus
50 μg/ml uridine and 5mM AA and/or 5 mM BHB.
Cells were cultured for 7 days, changing the culture
medium every second day, and no allowing them to
overcome a confluence of 80%. These AA and BHB con-
centrations were selected in agreement with physio-
logical levels in patients on KD [5]. Cells were kept in
5% CO2 at 37 °C.
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Total DNA was extracted using a commercial kit. The
confirmation of LHON mutations was performed by poly-
merase chain reaction/restriction fragment length poly-
morphism (PCR/RFLP), as previously reported [1], by
using specific oligonucleotides primers that corresponded
to each primary mutation (m.3460G >A/MT-ND1,
m.11778G >A/MT-ND4 and m.14484 T > C/MTND6).
The percentage of m.13094 T > C mutation was also ana-
lyzed by PCR/RFLP by using primers 12906Fw (5′-CCTA
CACTCCAACTCATGAGACCCA-3′) and 13310Rv (5′-
TGCTAGGTGTGGTTGGTTGATGCCG − 3′). The
amplicon size is 406 base pairs (bp), and the PCR condi-
tions 95 °C 5min (95 °C 45 s / 64 °C 30 s / 72 °C 2min) 35
cycles, 72 °C 5min. The restriction enzyme AluI cuts the
mutant sequence in two 218 + 188 bp fragments [12]. The
mutation percentages were obtained with the GelProAna-
lyzer 4.0 program by scanning bands from RFLP gels. The
mtDNA copy number was determined by the qRT-PCR
method, as described elsewhere [43]. Briefly, a 123 bp (807
to 929) fragment of mitochondrial 12S RNA gene was an-
alyzed. The primers used to detect the mtDNA 12S se-
quences were MT-L (5′-CCACGGGAAACAGCAGT
GATT-3′) and MT-H (5′-CTATTGACTTGGGTTAATC
GTGTGA-3′) and were used together with the mtDNA
specific fluorescent-type MGB (minor groove binding)
Taqman probe, which was labeled internally by the fluor-
escent dye FAM (5′-TGCCAGCCACCGCG-3′). Probe
and primers designs were implemented with Primer Ex-
press 2.0 software. The mtDNA quantity was corrected by
simultaneous measurement of a single copy nuclear
RNase P gene. To quantify nDNA, a commercial kit was
used (PDARs RNAseP), and the nDNA specific fluores-
cent probe was labeled internally using the fluorescent dye
VIC.
ATP amount, normalized by the cell number, was

measured following previously described protocols
with slight modifications [44], using the CellTiter-
Glow Luminiscent Cell Viability Assay according to
the manufacturer’s instructions. Briefly, 10,000 cells/
well were seeded 14–16 h before measurement. Then,
cells were washed twice with PBS and incubated for
2 h in record solution with 5 mM 2-deoxy-D-glucose
plus 1 mM pyruvate (oxidative ATP production). Cells
were lysed, and lysates were incubated with the lucif-
erin/luciferase reagents. Samples were measured using
a microplate luminometer, and the results referred to
cell number.
Data for mean and standard deviation are presented.

One-way ANOVA, Bonferroni post-hoc test and t-test
were used to compare parameters. P-values lower than
0.05 were considered statistically significant.
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