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Abstract

Background: Hereditary spastic paraplegias (HSP) are of great clinical and genetic heterogeneity. According to the
clinical features, HSP can be divided into pure or complicated subtypes which combined with other neurological
symptoms including cerebellar ataxia. Up to date, 78 loci or genes have been implicated in HSP. CAPN1 was a novel
gene detected recently for spastic paraplegia 76 (SPG76).

Methods: Patients referred to our clinic with spastic or spastic-ataxic gait were collected. Genetic testing of the
probands were performed by target sequencing of a panel containing over 4000 known virulence genes. And the
candidate mutations were further confirmed by polymerase chain reaction (PCR) and Sanger sequencing. The
clinical materials of these patients were demonstrated retrospectively.

Results: Two Chinese patients, both from consanguineous families, each carried a novel homozygous mutation of
CAPN1, p.R48X and p.R339X. The male proband presented pure HSP subtype while the female proband presented
complicated HSP symptoms with cerebellar ataxia. We then reviewed all the literatures of HSP patients carrying
CAPN1 mutations and summarized the molecular spectrum and clinical characteristics of CAPN1-related SPG76.

Conclusion: These two SPG76 patients carrying CAPN1 mutations were the first reported in China. By reviewing the
clinical manifestations of SPG76 patients, we validated the “spastic-ataxia” phenotype and emphasized the
association between spasticity and ataxia, indicating the importance of CAPN1 screening in HSP patients.

Keywords: Hereditary spastic paraplegias (HSP), Spastic paraplegia 76(SPG76), CAPN1 mutations, Ataxia

Introduction
Hereditary spastic paraplegias (HSP) present great genetic
and clinical heterogeneity, mainly manifesting as spasticity
and weakness in the lower limbs [1]. On the basis of clin-
ical features, HSP can be categorized into pure and com-
plicated subtypes [2]. In addition to the dominant
progressive spasticity and weakness, pure HSP can also
present symptoms of hypertonic bladder and sensory dis-
turbances. Complicated HSP is often accompanied by
other neurological symptoms, including cerebellar ataxia,
seizure, extrapyramidal signs, intellectual disability, per-
ipheral neuropathy, amyotrophy, optic atrophy and others

[3, 4]. Among them, cerebellar ataxia occurs most fre-
quently in complicated HSP, resulting in “spasticity-ataxia”
phenotype [5]. The hereditary modes of HSP include
autosomal-dominant (AD), autosomal-recessive (AR),
X-linked and maternal trait of inheritance which due to
mitochondrial impairment [4]. In all these hereditary
modes, AR inheritance is the commonest one [6]. Up to
date, a total of 78 loci have been implicated in HSP [5].
Recently, CAPN1 has been identified as a causative gene

for spastic paraplegia 76 (SPG76, MIM#616907,
NM_005186), a complicated form of HSP [7]. The protein
encoded by CAPN1 was calpain-1, which was widely
expressed in central nervous system (CNS), has been in-
volved in several important functions of synaptic plasticity,
synaptic restructuring, axon maturation and maintenance
[8–10]. In 2016, mutations of CAPN1 [c.884G >C
(p.R295P), c.1579C >T (p.Q527*), c.406delC (p.P136Rfs*40)
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and c.1605 + 5G >A] were identified in three AR inherited
HSP pedigrees for the first time [7]. Subsequently, other
homozygous or compound-heterozygous mutations of
CAPN1 were reported in other groups [11–17].
In this study, we reported two Chinese HSP probands,

both from consanguineous family (Fig. 1), each carried a
novel homozygous mutation of CAPN1. To our know-
ledge, they were the first SPG76 patients reported in
China. Their clinical features and disease progressions
were demonstrated retrospectively and would broaden
the molecular and clinical spectrum of Chinese HSP
patients.

Methods
The probands with walking problems such as spastic or
spastic-ataxic gait were collected in the Neurogenetics
clinic in Huashan Hospital (Shanghai, PRC). The clinical
materials were investigated in both probands.
Genomic DNA was extracted from peripheral blood of

both patients and their parents or siblings. Genetic test-
ing of the probands were performed by target sequen-
cing of a panel containing over 4000 known virulence
genes. The sequencing was carried out by Illumina
HiSeq X-ten platform. The variants screen protocol was
as previously reported [18]. The candidate mutations
were further confirmed by polymerase chain reaction
(PCR) and Sanger sequencing. These mutations were
also performed in the parents or siblings to confirm the
family co-segregation.
Written informed consents were obtained from both

patients and their relatives. This study was approved by
the ethics committee of Huashan Hospital.

Results
Results of genetic testing
In family A, the mean depth of target sequencing was
73.5X and the coverage was 100%. The percentage of the
target region with mean depth > 20X was 97.0%. Accord-
ing to the screening criteria of low variants frequencies
[< 1% in 1000Genome (http://www.1000genomes.org/
home), ExAC (http://exac.broadinstitute.org/)] and
homozygous mapping, 38 variants were left. But after
further screened by clinical manifestations, only one
novel homozygous mutation of c.142C > T (p.R48X,
NC_000011.10:g.64950314C > T) in CAPN1 (NM_
001198868) was found with the depth of 84X.
In family B, the mean depth of target sequencing, the

coverage and the percentage of the target region with
mean depth > 20X was 107.8X, 99.3 and 97.4% respect-
ively. After screened by the criteria mentioned above,
one novel homozygous mutation of c.1015C > T
(p.R339X, NC_000011.10:g.64956067 C > T) in CAPN1
was found with the depth of 70X.
Both mutations have been confirmed in the probands

and their parents or siblings by Sanger sequencing. The
unaffected parents and two unaffected elder sisters of
the proband in Family A all carried c.142C > T in the
heterozygous state. In family B, the mutation of
c.1015C > T was found heterozygous in the unaffected
parents of the proband.
Both variants were partly conserved across species

(Fig. 2) and was predicted to be disease causing by
mutationtaster (mutationtaster.org) since the truncated
mutant took place in positions of R48 and R339 which
might cause nonfunctional protein product or affect
functional subdomains of the protein.

Fig. 1 Pedigrees of family A and family B with CAPN1 mutations. Arrow: proband; square: male; circle: female; slash: deceased; solid symbol:
affected. W/M and M/M represent the genotype of CAPN1. W/M: wild type/mutant; M/M: mutant/mutant
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Clinical characteristics
The proband from family A gradually developed walking
difficulties and stiffness in the lower limbs at age 18.
The symptoms deteriorated slowly. He came to our
clinic at age 38 and shown a typical spastic gait.

Neurologic examination revealed that the muscle tone in
both lower limbs was extremely high. Knee and ankle
hyperreflexia were also found in both lower limbs. Bilat-
eral Hoffmann sign and Babinski sign were positive. He
could still walk along a straight line. Finger-to-nose test

Fig. 2 a Sanger sequencing of both probands and their other unaffected family members. b Sequence alignment of calpain-1 across species
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and diadochokinesia were performed well. The examin-
ation of ocular movement was fine. No distal sensory
impairment, cognitive deterioration, bladder dysfunction,
or dysarthria was complained. Nerve conduction study
and electromyography did not reveal any neurogenic
and myogenic damages. The results of head and spinal
cord magnetic resonance image (MRI) were also
negative.
The proband from family B referred to our clinic

for progressive walking difficulties at age 41. Five
years ago, she reported weakness in the lower limbs
and there was a slight tiptoe when she was walking.
She felt slight imbalance and could not walk along a
straight line well. The neurological examination re-
vealed hyperreflexia in four limbs and positive bilat-
eral Hoffmann sign. She presented with a moderately
spastic-ataxic gait. She had slight bilateral dysmetria
when performed finger-to-finger test and mild dysdia-
dochokinesia. The heel knee test was fine. The ocular
pursuit and saccades were normal. She scored 6/40
on the Scale for the Assessment and Rating of Ataxia
(SARA). The mini-mental state examination score was
29/30 (education year of 14) suggesting the normal
cognitive function. No dysarthria, distal sensory im-
pairment or bladder dysfunction was reported. Nei-
ther cerebellum nor spinal cord showed significant
atrophy on MRI.

Literatures review
A total of nineteen pedigrees including 35 patients (24
Female, 11 Male patients) with CAPN1 mutations re-
ported till recently were reviewed (Table 1). All the pa-
tients showed a pattern of AR inheritance and 85.7%
pedigrees were consanguineous. Thirty patients carried
homozygous mutations and five patients carried com-
pound heterozygous mutations. The onset age ranged
from five to 39 years old. With all the available clinical
materials, lower limbs spasticity, presenting with stiff-
ness, hyperreflexia and pathological signs, developed in
around 80% patients, followed by cerebellar ataxia devel-
oping in 62.9% of the cases, dysarthria in 51.4%, skeletal
or tendon deformity in 31.4%. Weakness in lower limbs
and ocular movement disorder could also be seen. Some
patients developed abnormal bladder function, dyspha-
gia, peripheral neuropathy, intention tremor and even
other uncommon symptoms.

Discussion
With the wildly application of next generation se-
quencing, more and more classical “HSP genes”
causing cerebellar ataxia were found and vice versa.
So, these genes could be categorized as “spasticity-a-
taxia” spectrum. According to a review in 2017,
genes related to “spasticity-ataxia” spectrum was

expanded to 69 members [5]. CAPN1 was one of
them, manifesting as pure HSP or complicated HSP.
The mutations in CAPN1 causing autosomal reces-
sive HSP have been found since 2016 by whole ex-
ome sequencing in three pedigrees. Among these
patients carrying CAPN1 mutations, lower limbs
spasticity was the predominant symptom combined
with cerebellar ataxia or not. Therefore, “spasticity-a-
taxia” phenotype might conduce to the diagnosis of
SPG76.
The protein product of CAPN1, calpain-1, also known

as μ-calpain, contains four domains: the N-terminal an-
chor helix region, the CysPc protease domain (including
two protease core domains of PC1 and PC2), the C2
domain-like domain and the penta-EF-hand domain
(PEF). As a calcium-activated cysteine protease,
calpain-1 binds to calcium through PEF domain [19]. It
has been proved that the activation of calpain-1 is re-
quired for its neuro-protective role in CNS [20]. Several
mechanisms for the protective role were suggested by
interacting with CDK5 and NR2B to control
NMDA-receptor degradation [21] or affecting AMPA re-
ceptors through degradation of its substrate, glutamate
receptor-interacting protein [22]. In calpain-1 deficient
mice, dysfunction of calpain-1 reduced dendritic branch-
ing complexity and led to spine density deficits [23]. In
zebrafish embryos, knockdown of calpain-1 induced dis-
ruption of microtubule network in brain and spinal cord
[24], which indicated that dysfunction of calpain-1 could
result in neurodegeneration or disorganization of neu-
rons [25]. Immunohistochemistry study revealed that
calpain-1 was the major calpain isoform in cerebellar
neurons [26], and the activity of it in cerebellum was
higher than that in cortex or hippocampus [27], suggest-
ing that calpain-1 played a key role in maintaining the
normal cerebellar function.
All the reported mutations scattered in exons 2–6, 8–

10, 13, 14 and 21of CAPN1, potentially damaged the nor-
mal structure of calpain-1 or led to early termination of
protein coding, causing the dysfunction of calpain-1. In
this current study, the probands were in accordance with
two HSP subtypes: the male patient presented with pure
HSP subtype with normal cerebellar function, while the
female patient manifested as classical complicated HSP
subtype showing symptoms of both HSP and cerebellar
ataxia. Two novel homozygous mutations c.1176G >A
and c.675C > A of CAPN1 were detected respectively.
These two mutations were situated in exon 2 and exon 10
and brought on a premature stop codon at the positions
of R48 and R339, causing the destruction of calpain-1 nor-
mal structure. The structural incompleteness of calpain-1
would interfere with its neuro-protective role in CNS and
induce neurodegeneration or disorganization of neurons,
which might lead to SPG76.
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Conclusion
Together with previously reported cases, our study
broadened the clinical and molecular spectrum of
CAPN1-related SPG76 and exemplified the concept of
“spasticity-ataxia” phenotype, further increasing our un-
derstanding of complicated HSP form and its connection
with cerebellar ataxia. All these observations indicated
that CAPN1 screening is necessary in HSP patients, es-
pecially when patients suffer from spasticity-ataxia
phenotype.
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