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Abstract

Background: Erdheim-Chester disease (ECD) is a rare non-Langerhans histiocytosis characterized by systemic
inflammation and granulomatous infiltration of multiple organs including the central nervous system (CNS), bones,
and retroperitoneum. CNS infiltration occurs in one third of patients, but cognitive changes are common in patients
without CNS disease. Here we investigate whether there is a neuroanatomic basis to observed cognitive deficits,
even in absence of CNS disease.

Methods: We present a volumetric analysis of eleven ECD patients without CNS tumors or prior neurotoxic treatments.

Results: Compared to age-matched controls, ECD patients have diffuse, bihemispheric reduction in cortical thickness
and subcortical gray matter.

Conclusions: These findings provide the first corroborating evidence for neurologic disease in ECD patients without
direct CNS infiltration.
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Background
Erdheim-Chester disease (ECD) is a rare non-Langerhans
histiocytosis reported in approximately 550 cases since its
initial description in 1930. ECD is a multisystem disease
characterized by lipogranulomatous histiocytic infiltration
in virtually any organ, although the most commonly af-
fected sites include the bones of the legs, retroperitoneum,
heart, orbits, skin, and brain [1]. Historically, ECD was
postulated to be an autoimmune-granulomatous disorder
characterized by chronic inflammation and cytokine
perturbations [2]; recently it has been recognized as an
inflammatory myeloid neoplasia associated with oncogenic
mutations of kinase signaling including BRAF, NRAS,
KRAS, MAP2K1, and PIK3CA [1, 3, 4].
Histiocytic infiltrates of the brain or surrounding

structures occur in one-third of patients and central ner-
vous system (CNS) involvement is a chief cause of death
in ECD [1]. However, neurologic symptoms and signs,
including cognitive decline and behavioral changes, have

been informally observed in ECD patients without evi-
dence of infiltrative tumors in the brain. These phenom-
ena are of pressing significance to patients but have yet to
be characterized clinically or radiographically. As a first at-
tempt to describe neuroanatomical abnormalities in ECD
unrelated to neoplastic infiltration, we performed explora-
tory whole-brain cortical thickness analysis of eleven ECD
patients without cerebral CNS lesions or prior cytotoxic
chemotherapies and compared them to age-matched con-
trols. Our hypothesis was that there would be reduced
cortical thickness in ECD as compared to controls.

Methods
Eleven patients with histologically confirmed ECD were
studied. To eliminate confounding effects of disease or
treatment, patients had neither (1) supratentorial lesions
on T2-weighted/FLAIR or T1-weighted MRI nor (2) prior
cytotoxic chemotherapy. All patients had high-resolution
3D-volumetric T1-weighted gadolinium-enhanced scans
performed for standard clinical evaluation. These images
were performed on 1.5 T or 3 T scanners (Signa HDxt/
Excite, Discovery 450/750, GE Healthcare) using an 8-
channel head coil with slice thickness ranging from 1 to
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2 mm, in plane resolutions ranging from 0.55 to
1.26 mm2 and voxel volumes ranging from 0.74 to
2.04 mm3. Images were analyzed with the FreeSurfer
(http://freesurfer.net) semi-automated processing pipeline
[5, 6]. Images were morphed to Talairach space, white
matter intensities were normalized, and the brain portion
was extracted by skull-stripping. Because of gadolinium
enhancement of the dura and choroid, a custom pre-
processing pipeline involving a custom brain mask was
developed and added to Freesurfer [7]. SPM’s DARTEL
tool was used for a more robust classification of the brain
into six tissue types: gray matter, white matter, cerebro-
spinal fluid, skull, soft non-brain tissue, and air. FSL and
AFNI were used to combine these tissue maps and to di-
late them to remove hyperintense dura and choroid. This
augmented brain mask was then entered into Freesurfer
and subsequent steps followed the automated processing
stream. An experienced board-certified neuroradiologist
inspected and approved all segmentations. Three patients
were excluded because of inadequate segmentation. For
the purpose of obtaining statistical parameter maps, 14
healthy age-matched subjects’ MRIs were chosen from an
ongoing volumetric study of healthy subjects. Acquisi-
tion and processing protocols were identical to the
ECD group, save that these had fully standardized image
acquisitions and did not require custom pre-processing.
Group-level whole-brain comparison of cortical thickness

and subcortical volumes were performed in the ECD pa-
tients and controls. Significance of identified clusters was
thresholded at p < 0.001 after correction for multiple com-
parisons with the false discovery rate (FDR) method.

Results
Seven patients were men and age ranged 48–75 (Table 1).
Sites of disease involvement for the entire cohort includes
bones, retroperitoneum, mesentery, orbits, subcutaneous
and spinal soft tissues, lungs, heart, skin, and posterior
fossa. Seven patients had cognitive complaints of inatten-
tion or memory difficulties and described compromised
performance at work or inability to work entirely. Cere-
brospinal fluid was obtained and unremarkable in five pa-
tients. Non-specific inflammatory markers were elevated
in all patients tested. 10/11 patients had had no ECD
treatment, and one was treated with immunosuppression.
Comparison of cortical thickness between ECD patients

and age-matched controls revealed diffuse bihemispheric
reduction in cortical thickness (Fig. 1). Analyses were
performed including and excluding the two patients with
infratentorial disease with entirely comparable results;
therefore, the findings of all 11 patients are presented.
After FDR correction, 37 clusters were significant at
p < 0.001, 21 in the left hemisphere and 16 in the right
(Table 2). Of these, 17 were in parietal cortices (9 left,
8 right), 10 were in frontal cortices (6 left, 4 right), 6

Table 1 Patient characteristics

Patient Organ systems affected by ECD Co-morbid illnesses Cognitive
complaints

Concurrent
Medications

Inflammatory
Markersa

CSF Examinationb

66 Female Myocardium, bones None No None ESR >100 1 WBC; Protein 28;
Glucose 57;

CRP 4.39

75 Male Mesentery, orbit, bones, skin Chronic myelomonocytic
leukemia

Yes Prednisone CRP 0.98 -

54 Male Brainstem, retroperitoneum,
bones

Diabetes mellitus No Prednisolone ESR 31 2 WBC; Protein 42;
Glucose 78

CRP 1.8

51 Male Retroperitoneum, aorta,
pericardium, pleura, bones

Essential thrombocytosis Yes Interferon-alpha,
anakinra

- 1 WBC; Protein 21;
Glucose 54

51 Male Orbit, retroperitoneum,
epidural soft tissues, bones

Ulcerative colitis Yes None CRP 1.63 -

60 Male Retroperitoneum, lung, skin,
bones

MALT lymphoma Yes Prednisone ESR 92 2 WBC; Protein 33;
Glucose 58

CRP 1.49

48 Female Orbit, retroperitoneum, bones None Yes Prednisone CRP 3.81 -

66 Female Brainstem, retroperitoneum,
bones

None Yes Prednisone - 2 WBC; Protein 71;
Glucose 57

68 Male Retroperitoneum, bones,
subcutaneous soft tissues

None No None ESR 61 -

CRP 6.29

58 Male Orbit, retroperitoneum, bones None No Prednisone CRP 3.42 -

52 Female Subcutaneous soft tissues,
maxillary sinus, bones, skin

None Yes None CRP 2.56 -

aNormal range for ESR 0-15 mm/h; Normal range for C-Reactive Protein <0.80 mg/dl
bNormal WBC count in CSF <4 cells per μL; Normal CSF protein 21–38 mg/dL; Normal CSF glucose 38–82 mg/dL
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were in temporal cortices (3 left, 3 right), and 4 were
in occipital cortices (3 left, 1 right). The largest clusters
(greater than 10 cm2 surface area on the Desikan-Killarney
standard brain atlas) were in the right precentral gyrus
(38.32 cm2), right superior frontal gyrus (38.56 cm2), left
supramarginal gyrus (33.59 cm2), left superior frontal gyrus
(19.86 cm2), left precentral gyrus (19.42 cm2), right ento-
rhinal cortex (16.62 cm2), and left superior parietal gyrus
(10.52 cm2). Total subcortical grey matter volume was
significantly reduced in ECD patients (mean volume
57 cm3 ± 5.1) compared to controls (158 cm3 ± 21.6; p <
0.0001; Table 2). There were no differences in white mat-
ter or cerebellar volumes between patients and controls.

Discussion
In this study we present group-level analysis of cortical
thickness and subcortical volumes in 11 ECD patients
compared to age-matched healthy controls. Despite the
small number of patients, reduction of cortical thickness
and subcortical grey matter volumes in ECD patients was
demonstrated to a statistical significance of p < 0.001 in 37
cortical clusters after correction for multiple comparisons.
These findings suggest the possibility of a diffuse and
significant neurodegenerative process at hand. This study
provides the first objective evidence to corroborate a

common clinical observation of neurologic dysfunction in
ECD patients without cerebral tumors. Further confirm-
ation and characterization of this process in its relation to
ECD is vital not only to envision potential interventions
but also to advocate for appropriate medical and disability
benefits.
Neuropathologic studies of ECD are sparse and de-

scribe mass lesions whose histopathology reveals classic
histiocytic infiltrates with admixed inflammation [8]. No
pathologic studies of brains ostensibly unaffected by ECD
have been performed. There is greater literature about
neurologic and neuropathologic findings in Langerhans
cell histiocytosis (LCH), an entity closely related to ECD.
Non-infiltrative neurodegenerative phenomena are recog-
nized in pediatric LCH, although rare. The spectrum of
findings includes T2 abnormalities in the cerebellum, cere-
bellar degeneration, supratentorial leukoencephalopathy,
dilation of Virchow-Robin spaces, and rarely diffuse cere-
bral atrophy [9]. Subclinical neurocognitive deficits have
been found in a minority of long-term LCH survivors, al-
though without correlation to neuropathologic findings,
and it remains unclear whether these are sequelae of
disease or treatment [10]. Mechanisms underlying non-
infiltrative disease in LCH have not been identified, al-
though paraneoplasia has been postulated and modest

Fig. 1 Whole-brain cortical thickness analysis of 11 ECD patients as compared to age-matched controls. Color maps represent statistical
significance (t-statistic), with yellow representing the greatest statistical significance. Both cerebral hemispheres are represented in lateral
projections (a,e), medial projections (b,f), superior (c,g), and inferior (d,h). The maps demonstrate diffuse and widespread regions of cortical
volume loss with a predominance of the frontal and temporal lobes
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therapeutic benefit has been seen with immunosup-
pressive and cytotoxic therapies [9].
Further study is necessary to suggest a mechanism for re-

duction in cerebral volumes in ECD. Our study does not es-
tablish whether this phenomenon is restricted to grey matter,
as we did not examine the whitematter in a dedicated fashion.
It is possible that reduction in grey matter is secondary to a
primary process involving the white matter, such as has been

postulated in subcortical dementias [11, 12]; in our patients
there is no visible leukoencephalopathy, but inapparent white
matter dysfunction is possible. Also, it is worth noting that the
diffuse pattern of grey matter loss is different from that seen
with other neurodegenerative entities, such as Alzheimer’s
disease, Lewy body dementia, and HIV-associated neuro-
degeneration, which have various regional distributions
[13–15]. Because ECD can be diagnosed years and even

Table 2 Comparison of cortical thickness and subcortical volumes between ECD Patients and age-matched controls

A. Left Hemisphere B. Right Hemisphere

Cluster Location Size (mm2) logP TalX TalY TalZ Cluster Location Size (mm2) logP TalX TalY TalZ

1 Superior parietal 1052 −7.81 −19 −65 59 1 Precentral 3832 −7.06 42 −6 55

2 Supramarginal 3359 −7.62 −59 −51 21 2 Postcentral 601 −6.42 44 −28 62

3 Postcentral 602 −7.35 −42 −29 63 3 Entorhinal 1662 −6.00 21 −10 −30

4 Precentral 1942 −6.64 −29 −16 67 4 Superior frontal 3856 −5.62 9 20 60

5 Superior frontal 1986 −6.39 −7 50 40 5 Precentral 107 4.96 19 −31 55

6 Inferior parietal 539 −6.06 −35 −77 38 6 Superior temporal 884 −4.83 66 −32 10

7 Caudal middle frontal 915 −5.66 −35 16 51 7 Supramarginal 443 −4.81 57 −33 45

8 Fusiform 313 −5.26 −30 −40 −22 8 Lateral occipital 920 −4.68 43 −83 −12

9 Inferior parietal 417 5.20 −32 −74 20 9 Inferior parietal 870 −4.67 46 −60 45

10 Precentral 277 −5.13 −58 6 25 10 Superior parietal 280 −4.15 34 −49 63

11 Precuneus 216 −4.25 −7 −55 16 11 Superior parietal 660 −4.07 21 −78 44

12 Entorhinal 207 −4.13 −20 −10 −31 12 Fusiform 316 −3.71 29 −57 −15

13 Posterior cingulate 261 −3.61 −6 −29 38 13 Inferior parietal 266 3.17 33 −70 23

14 Pericalcarine 489 3.58 −9 −82 12 14 Precuneus 79 3.16 12 −54 33

15 Lateral occipital 375 −3.51 −16 −100 5 15 Pars opercularis 464 −3.03 55 22 16

16 Supramarginal 195 −3.42 −61 −31 36 16 Posterior cingulate 158 −3.02 6 −19 40

17 Inferior temporal 113 −3.28 −46 −12 −39

18 Lateral occipital 98 −3.24 −43 −82 0

19 Lateral occipital 101 −3.04 −34 −87 10

20 Precentral 122 −3.01 −57 2 7

21 Pars orbitalis 68 −3.01 −46 36 −14

C. Subcortical Volumes

Volume Group Mean volume (cm3) STD 95 % CI p-value

Subcortical gray matter (all) ECD 57 5.1 5.4–6.1
<0.0001

Control 158 21.6 145.7–170.6

White matter (right hemisphere) ECD 247 42.3 218.8–275.7
0.75

Control 237 388 214.0–258.9

White matter (left hemisphere) ECD 246 43.5 216.3–274.7
0.74

Control 238 39.7 214.3–260.2

Cerebellar grey matter (right) ECD 50 6.9 45.0–54.2
0.6

Control 43 8.1 38.1–47.5

Cerebellar grey matter (left) ECD 48 7.4 42.8–52.7
0.97

Control 43 7.5 38.9–47.6

Significant clusters with FDR corrected p <0.001 are listed in order of descending statistical significance with anatomic location, cluster size in mm2, log(10)P, and
Talairach coordinates for the cortical regions of the left (A) and right (B) hemispheres. Comparison of subcortical volumes, including total white matter, total grey
matter, and total cerebellar volumes, is presented in (C)
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decades after first symptoms, the possible chronicity of dis-
ease in these patients suggests that grey matter changes may
have been more regional and less diffuse if measured earlier.
Prospective and longitudinal study of this nature in ECD pa-
tients would be extremely informative.
A defining feature of ECD is robust, chronic, and un-

controlled systemic inflammation. Because of its extreme
rarity, ECD is frequently diagnosed after several years of
symptoms, and therefore inflammation is longstanding
even in newly diagnosed patients. Studies have described
a signature pattern of cytokine perturbations in ECD, in-
cluding elevations in TNF-α, IL-1β, and IL-6, and it has
been shown that a cytokinemic state persists even in the
setting of treated disease [2, 16–18]. Systemic inflamma-
tion itself has been implicated as a cause of neurotox-
icity and neurodegeneration [19–21], and it is plausible
that such a process is operative in ECD. One potential
pathogenic mechanism involves cytokines that readily
pass the blood-brain barrier, activate microglia, and per-
petuate further maladaptive inflammatory events [19]. It
is notable that the cytokines imputed in this process,
TNF-α, IL-1β, and IL-6, are specifically those elevated in
ECD. Cytokine studies of CSF have not been performed
to corroborate this idea or to provide any evidence of
neuroinflammation in ECD.
There are several limitations to this exploratory study.

First, our cohort is small. Furthermore, there are no
neurocognitive data to quantitate cognitive complaints
or to identify subclinical deficits. The ulta-rarity of this
orphan disease, however, renders it uniquely difficult to
collect data prospectively. In light of this, a sample of 11
evaluable high-resolution images of patients without
confounding treatments represents a relatively large co-
hort without precedent. Regarding image processing, scans
were obtained for clinical care, and therefore there was
variability in acquisition parameters and magnet strength.
For that reason, scans were carefully screened and re-
moved if segmentation quality precluded accurate volu-
metrics. Furthermore, cortical thickness measurement by
Freesurfer has demonstrated consistency across scanning
platforms and field strengths [22]. In addition, the uniform-
ity of our findings and their statistical strength suggests
they will be reproduced in larger studies. Finally, it should
be noted that several patients were taking corticosteroids,
and this has been independently found to be associated
with brain atrophy by a variety of possible mechanisms
including osmotic effects [23]. This finding has been
observed mainly in the context of high-dose steroids or
long-term low-dose steroids, neither of which was admin-
istered to our patients. Confirmation of these findings in a
prospective study with parallel analysis of complementary
imaging modalities, assessment of cognitive function, and
correlation with markers of serum and CSF inflammation
is necessary.
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