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Phenotype prediction for
mucopolysaccharidosis type I by in silico
analysis
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Abstract

Background: Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disease due to deficiency of
α-L-iduronidase (IDUA), a lysosomal enzyme that degrades glycosaminoglycans (GAG) heparan and dermatan
sulfate. To achieve optimal clinical outcomes, early and proper treatment is essential, which requires early
diagnosis and phenotype severity prediction.

Results: To establish a genotype/phenotype correlation of MPS I disease, a combination of bioinformatics tools
including SIFT, PolyPhen, I-Mutant, PROVEAN, PANTHER, SNPs&GO and PHD-SNP are utilized. Through analyzing
single nucleotide polymorphisms (SNPs) by these in silico approaches, 28 out of 285 missense SNPs were
predicted to be damaging. By integrating outcomes from these in silico approaches, a prediction algorithm
(sensitivity 94%, specificity 80%) was thereby developed. Three dimensional structural analysis of 5 candidate
SNPs (P533R, P496R, L346R, D349G, T374P) were performed by SWISS PDB viewer, which revealed specific
structural changes responsible for the functional impacts of these SNPs. Additionally, SNPs in the untranslated
region were analyzed by UTRscan and PolymiRTS. Moreover, by investigating known pathogenic mutations and
relevant patient phenotypes in previous publications, phenotype severity (severe, intermediate or mild) of each
mutation was deduced.

Conclusions: Collectively, these results identified potential candidate SNPs with functional significance for
studying MPS I disease. This study also demonstrates the effectiveness, reliability and simplicity of these in
silico approaches in addressing complexity of underlying genetic basis of MPS I disease. Further, a step-by-step
guideline for phenotype prediction of MPS I disease is established, which can be broadly applied in other
lysosomal diseases or genetic disorders.
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Background
Mucopolysaccharidosis type I (MPS I) is a lysosomal
disease included within the genetically heterogeneous
group of mucopolysaccharidoses (MPSs). MPS I results
from mutations in the gene encoding the lysosomal en-
zyme α-L-iduronidase (IDUA; glycosaminoglycan a-L-
iduronohydrolase, OMIM 252800) [1]. Deficiency of
IDUA leads to progressive lysosomal accumulation of
glycosaminoglycans (GAG) heparan and dermatan sulfate
in tissues. Based on the severity of symptoms, MPS I can
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be divided into three subtypes, from mild (Scheie syn-
drome, OMIM 607016) to intermediate (Hurler-Scheie
syndrome, OMIM 607015) to severe (Hurler syndrome,
OMIM 607016). Scheie or Hurler-Scheie patients have
symptoms including growth delay, aortic valvular disease,
skeletal dysplasias, corneal clouding and joint stiffness. In
addition to having these symptoms, but in a more pro-
nounced way, Hurler patients also have growth delay,
hepatosplenomegaly, coarse facial features, hydrocephalus,
mental retardation and neurodegeneration.
It has been shown that the earlier enzyme replacement

therapy or hematopoetic stem cell transplantation is
performed, the better the outcome is [2–5]. Since early
initiation of treatment is more likely to improve clinical
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outcomes, early diagnosis and accurate phenotype predic-
tion are essential. However, genotype/phenotype correl-
ation of MPS I has not been well established [6, 7]. To
date, assessment of the phenotype is generally based on
clinical signs and symptoms. A recent study showed a lack
of consensus on the assessment of phenotypic severity
solely based on signs and symptoms at presentation [8].
Therefore, establishment of a reliable and easy-to-use
phenotype prediction method based on genotype will be
of great benefit.
The single nucleotide polymorphisms (SNPs) are the

most common form of genetic mutations. SNP was ori-
ginally defined as a single nucleotide variant with a fre-
quency in genome of more than 1% [9]. In this study, for
the simplicity of description, single nucleotide variants
with a frequency of less than 1% were also included in
the analysis. While many SNPs are phenotypically neutral,
others could cause disease, predispose human to disease,
or influence response to medicine. Previous studies on
polymorphisms screening by in silico analysis contributed
to predicting the functional non-synonymous SNPs
(nsSNPs) in genes such as G6PD [10], ATM [11], PTEN
[12], BRAF [13] and BUB1B [14]. This powerful computed
methodology enables prioritizing SNPs with functional
significance from a large quantity of neutral non-risk vari-
ants. To date, computational analyses of IDUA gene for
phenotype prediction have not been performed. To this
end, a number of bioinformatics tools, based on recent
findings from evolutionary biology, protein structure re-
search, machine learning and computational biology, may
provide useful information for assessing the functional im-
pacts of SNPs. A stepwise guideline for phenotype predic-
tion based on genotype is established, which will benefit
early diagnosis and proper treatment allocation for MPS I
patients.

Methods
Dataset
The SNPs information (Protein accession number and
SNP ID) of the IDUA gene was retrieved from the
NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp/). Known
disease-associated mutations in IDUA gene were retrieved
from The Human Gene Mutation Database (http://
www.hgmd.cf.ac.uk/ac/index.php).

SIFT
SIFT (Sorting Intolerant From Tolerant; http://sift.jcvi.org/)
can predict the effect of amino acid substitution on protein
function, and classify it as ‘tolerated’ or ‘deleterious’ [15].
SIFT applies multiple alignment information for the query
sequence and predicts whether substitutions are ‘tolerated’
or ‘deleterious’ by calculating the tolerance index score (0
to 1). Tolerance index score is a normalized probability that
an amino acid substitution is tolerated. Substitutions with a
tolerance index less than 0.05 are predicted to be ‘deleteri-
ous’ and those with greater than or equal to 0.05 are pre-
dicted as ‘tolerated’. The analysis was performed using the
default settings.
PolyPhen
PolyPhen (Polymorphism Phenotyping; http://genetics.bwh.
harvard.edu/pph2/) is a probabilistic classifier which pre-
dicts the functional impacts of SNPs. PolyPhen calculates
position-specific independent count (PSIC) scores for every
substitution and estimates the difference between the
variant scores. Based on PSIC, Polyphen classifies SNPs
into ‘probably damaging’ (score > 0.85), ‘possibly damaging’
(score > 0.15) and ‘benign’ (the rest) [16].
I-Mutant
I-Mutant (http://folding.biofold.org/cgi-bin/i-mutant2.0)
is a neural-network-based web server for the automatic
prediction of protein stability changes upon single amino
acid substitution. I-Mutant performs analyses based on
the protein sequence combined with mutational position.
The output is the predicted free energy change (DDG),
which classifies the prediction into: ‘large decrease’
(DDG < −0.5 kcal/mol), ‘large increase’ (DDG > 0.5 kcal/
mol), or ‘neutral’ (−0.5 < DDG < 0.5 kcal/mol) [17].
PROVEAN
PROVEAN (Protein Variation Effect Analyzer; http://
provean.jcvi.org) is a sequence based predictor that esti-
mates the impact of protein sequence variation on pro-
tein function [18]. In PROVEAN, BLAST hits with more
than 75% global sequence identity are clustered together,
and top 30 such clusters from a supporting sequence are
averaged within and across clusters to generate the final
score. A protein variant is predicted to be ‘deleterious’ if
the final score is below −2.5, and is predicted to be ‘neu-
tral’ otherwise.
PANTHER
PANTHER (http://www.pantherdb.org/) is a database
which contains a collection of protein families and sub-
families that predict the occurrence of an amino acid at
a position in a family of evolutionarily related protein [19].
PANTHER uses hidden Markov model (HMM) based
statistical modeling methods and multiple sequence align-
ments to perform evolutionary analysis of coding nsSNPs.
By calculating the substitution position-specific evolution-
ary conservation score (subPSEC) based on an alignment
of evolutionarily related proteins, PANTHER estimates
the likelihood of a particular nsSNP causing a functional
impact. Based on subPSEC scores, PANTHER classifies
SNPs as ‘deleterious’ (score < −3) or ‘neutral’ (score > −3).
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SNPs&GO
SNPs&GO (Single Nucleotide Polymorphism Database
& Gene Ontology; http://snps.biofold.org/snps-and-go/
snps-and-go.html) is an support vector machine (SVM)
based method used to predict the disease related muta-
tions from protein sequences with a scoring accuracy
of 82% and Matthews correlation coefficient of 0.63.
For SNPs&GO, FASTA sequence of whole protein is
considered to be an input option and output will be the
prediction results based on the discrimination among
‘disease’ and ‘neutral’ variations of protein sequence.
The probability score higher than 0.5 is defined as
‘disease’ [20].

PHD-SNP
PHD-SNP (Predictor of Human Deleterious Single
Nucleotide Polymorphisms; http://snps.biofold.org/
phd-snp/phd-snp.html) is an SVM-based classifier,
trained over a million amino acid polymorphism datasets
using supervised training. PHD-SNP predicts whether the
given amino acid substitution leads to ‘disease’ or ‘neutral’
along with the reliability index score [21].

NetSurfP
NetSurfP (http://www.cbs.dtu.dk/services/NetSurfP/) is a
web server that predicts the surface accessibility and sec-
ondary structure of amino acids. The reliability of this
NetsurfP is given in the form of Z-score. The Z-score
highlights the surface prediction reliability, but not asso-
ciated with secondary structure [22].

Modeling of mutant protein structures
The Swiss-PDB Viewer, a free molecular graphics pro-
gram was used for viewing the modeled structures and
for calculation of the root mean square deviation
(RMSD) between the native and mutant structures.
Swiss-PDB viewer named as Deep View, a stand-alone
program, was used as an analytical tool for macromole-
cules [23]. To superimpose protein structures, the
“Magic Interactive Fit” command was used for detection
of a stretch of similar residues at sequence level to ob-
tain a structural fit between the two models. Energy
minimization for three-dimensional (3D) structures was
performed using NOMAD-Ref server (http://lorent-
z.immstr.pasteur.fr/nomad-ref.php) [24]. Conjugate gra-
dient method was used for energy minimization of the
3D structures.

Project HOPE
Project Have yOur Protein Explained (HOPE; http://
www.cmbi.ru.nl/hope/home) is an easy-to-use web ser-
vice that analyzes the structural effects of a point mutation
in a protein sequence. HOPE provides the 3D structural
visualization of mutated proteins by using UniProt and
DAS prediction servers. HOPE server predicts the output
in the form of structural variation between mutant and
wild type residues [25].

UTRscan
UTRscan (http://itbtools.ba.itb.cnr.it/utrscan) is a web
server that can analyze the untranslated regions (5′ UTR
and 3′ UTR) of eukaryotic mRNA which are involved
in many post-transcriptional regulatory pathways that
control mRNA localization, stability and translation
[26]. The internet resource for UTR analysis are
UTRdb, which contains experimentally proven bio-
logical activity of functional pattern of UTR sequence
from eukaryotic mRNAs. If different sequences for
each UTR SNP are found to have different functional
patterns, that particular UTR SNP is predicted to have
functional significance.

PolymiRTS
PolymiRTS database (http://compbio.uthsc.edu/miRSNP/)
was used specifically for the analysis of SNPs in the 3′
UTR. The polymorphic microRNA target sites are clas-
sified into four classes [27]. Specifically, class ‘D’ may
cause loss of normal repression, and class ‘C’ may cause
abnormal gene repression control. Therefore, these two
classes of PolymiRTS are most likely to have functional
impacts.

Results
Analysis of missense SNPs using a combination of
bioinformatics tools
Polymorphisms in the IDUA gene were retrieved from
NCBI dbSNP database. Non-synonymous SNPs (nsSNPs)
from the coding region, and untranslated (5’and 3′) region
were selected for further analysis. The impacts of any
amino acid substitution with its functional significance
and physical properties can be determined using SIFT by
aligning homologous and orthologous protein sequence. A
total of 285 missense SNPs of IDUA gene were analyzed
using SIFT. Out of 285 SNPs, 201(71%) were predicted to
be ‘deleterious’ (tolerance index <0.05), while 157 (55%)
were ‘highly deleterious’ (tolerance index = 0). All 201
SNPs predicted to be ‘deleterious’ by SIFT were further
analyzed by PolyPhen. For every input SNP, Polyphen cal-
culates PSIC score and perform BLAST query to identify
homologous protein. A total of 149 SNPs were predicted
to be ‘probably damaging’. For further confirmation, the
PolyPhen results were subjected to I-Mutant, which is a
routine SNP prediction tool based on neural network, for
adding another layer of confirmation. I-Mutant estimates
the effect of substitution on protein stability by calculating
the reliability index (25 °C, pH 7.0). Out of 149 missense
SNPs analyzed, 107 (72%) were predicted to cause ‘large
decrease’, while 42 were predicted to cause ‘neutral
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stability’. The remaining 107 SNPs were analyzed by
PROVEAN, yielding 93 deleterious and 14 neutral
SNPs. Therefore, 93 out of 285 SNPs were predicted to
be damaging by 4 different methods and summarized
in Table 1.
All 93 SNPs identified were further analyzed by

PANTHER, SNPs&GO and PHD-SNP. PANTHER
characterizes the effect of amino acid variation on
protein function via HMM based statistical modeling.
PANTHER can classify proteins by function, adding
another layer of complexity to refine SNP prediction.
SNPs&GO predicts the log-odd (LGO) score from the
GO data base by placing the similar proteins in the
same dataset. PHD-SNP is an SVM-based classifier,
trained over a million amino acid polymorphism data-
sets using supervised training. Out of the 93 SNPs, 28
were predicted to be disease-associated by three
methods (Table 2).

Biophysical validation and 3D structure analysis of
missense SNPs
Based on the in silico analyses performed, 28 SNPs were
selected for biophysical analysis using NetSurfP. The
location and the type of a mutated residue can affect
the stability of the protein by decreasing the solvent
accessibility of a residue decreases. NetSurfP Z-score
allows for the identification of the most reliable pre-
dictions for both buried and exposed amino acids. Out
of 28 SNPs, a huge drift in the Z-score was observed
for 5 SNPs (Table 3).
To analyze the 3D structural change introduced by

these 5 SNPs, we performed structural analysis by com-
paring the native and mutant protein structures. Briefly,
the native structure of IDUA was extracted from Protein
Data Bank (ID 3 W81). Single amino acid substitution
and superimposition of native and mutated structures
were examined using Swiss-PDB viewer, and their degree
of similarity was measured as the RMSD value. RMSD
values between native and each mutant structure are
<0.5 Å, indicating a minor structural change caused by
the SNP. An illustration of overall superimposition by
Swiss-PDB viewer is shown in Fig. 1, while detailed
structural changes in Fig. 2. Total energy values of native
structure and 5 mutant structures were calculated after
energy minimization by NOMAD_Ref and summarized
in Table 4. The total energy of three mutant models
(L346R, P496R and P533R) is significantly higher than
that of the native model, indicating that the mutation
decreases the protein stability.
Specifically, rs772416503 leads to conversion of pro-

line into arginine at position 496 (P496R). The hydro-
phobic environment around Pro496 leaves no room for
a bulky polar residue (arginine). This mutation (P496R)
may interfere with the placement of Asn372 glycan over
the active site, and thereby affect enzyme catalytic activ-
ity. Rs371397270 leads to conversion of aspartic acid
into glycine at position 349 (D349G). Asp349 is located
in triosephosphateisomerase (TIM) barrel active site and
interacts with substrate. Besides, since glycine is smaller
than aspartic acid, the mutation will cause an empty
space in the core of the protein. The charge of the bur-
ied wild-type residue is also lost due to this mutation.
Therefore, D349G will also cause loss of hydrogen bonds
in the core of the protein and thereby disturb correct
folding. Rs121965021 (P533R) is located in the β sand-
wich. Prolines are known to have a very rigid structure,
sometimes forcing the backbone in a specific conform-
ation. P533R may disturb this special conformation and
destabilize the β sandwich domain by introducing the
side chain of arginine. Besides, only the wild type residue
proline is found at this position. Mutation of a 100%
conserved residue is usually damaging for the protein.
Rs121965033 (L346R), located in the TIM barrel, may
cause steric hindrance and destabilize active site con-
firmation. The mutant residue (Arg) introduces a charge
in a buried residue (Leu) which affects protein folding.
Besides, since Leu346 is buried in the core of the pro-
tein, Arg is bigger and probably will not fit. This muta-
tion will cause loss of hydrophobic interactions in the
core of the protein. Rs775816150 (T374P) is located at
Thr374, a conserved N glycosylation site. It has also
been shown that N-glycans are essential for substrate
binding and catalytic activity of IDUA [28]. Therefore,
this mutation (T374P) may lead to decrease or loss of
catalytic activity of IDUA.

Establishment and evaluation of SNPs prediction
algorithm
By integrating outcomes of the bioinformatics tools listed
in Section 3.1, a prediction algorithm (SAAMP: Single
Amino Acid Mutation Predictor) with a pathogenic index
(PI) was developed. PI is defined as percentage of ‘dam-
aging’ predictions from these 7 bioinformatics tools. The
higher the PI is, the more pathogenic the SNP is. The cut-
off value is set at 0.43. When PI is ≥0.43 (larger than or
equal to 3 damaging related predictions), the mutation is
defined as ‘pathogenic’, otherwise it is ‘benign’. A total of
81 known disease-associated missense mutations and 15
known benign polymorphisms of IDUA were analyzed by
these bioinformatics tools, and the PI of each mutation
was calculated. By assessing false positives and false
negatives, a sensitivity of 94% and a specificity of 80%
were reached. The false positives and false negatives
were evaluated manually, however, no significant pat-
terns were observed. It might be due to the differences
in methodologies utilized by these in silico tools. Alterna-
tively, when the cut-off value is set as 0.57 (larger than or
equal to 4 damaging related predictions), a sensitivity of



Table 1 List of 91 nsSNP predicted as damaging by SIFT, PolyPhen, I-Mutant, PROVEAN

SNP ID AA change SIFT Score PolyPhen Score I-Mutant Score PROVEAN Score

rs121965021 P533R Deleterious 0 Probably damaging 1 Large decrease −0.75 Deleterious −7.1

rs121965029 R89Q Deleterious 0 Probably damaging 1 Large decrease −0.73 Deleterious −3.08

rs121965030 A300T Deleterious 0 Probably damaging 0.999 Large decrease −0.77 Deleterious −3.68

rs121965031 R619G Deleterious 0 Probably damaging 0.999 Large decrease −1.51 Deleterious −4.63

rs121965033 L346R Deleterious 0 Probably damaging 1 Large decrease −1.77 Deleterious −5.3

rs138731804 A160T Deleterious 0 Probably damaging 1 Large decrease −0.67 Deleterious −3.31

rs140294059 C205S Deleterious 0.04 Probably damaging 0.964 Large decrease −1.09 Deleterious −7.57

rs147353014 L237H Deleterious 0 Probably damaging 1 Large decrease −1.98 Deleterious −6.4

rs148789453 L238Q Deleterious 0 Probably damaging 1 Large decrease −2.05 Deleterious −5.33

rs183347428 D223N Deleterious 0 Probably damaging 1 Large decrease −1.01 Deleterious −3.03

rs200448421 R628P Deleterious 0 Probably damaging 0.999 Large decrease −0.72 Deleterious −3.86

rs201268637 R263W Deleterious 0 Probably damaging 0.995 Large decrease −0.71 Deleterious −5.39

rs202051939 S269C Deleterious 0 Probably damaging 1 Large decrease −0.62 Deleterious −3.94

rs368241547 F247 L Deleterious 0.02 Probably damaging 0.993 Large decrease −1.28 Deleterious −4.33

rs368454909 D349N Deleterious 0 Probably damaging 1 Large decrease −0.78 Deleterious −4.64

rs369090960 G265R Deleterious 0 Probably damaging 1 Large decrease −0.66 Deleterious −7.46

rs371397270 D349G Deleterious 0 Probably damaging 1 Large decrease −1.08 Deleterious −6.43

rs373037758 L256P Deleterious 0 Probably damaging 1 Large decrease −1.98 Deleterious −6.1

rs373342547 F143 L Deleterious 0.05 Probably damaging 1 Large decrease −0.69 Deleterious −4.27

rs374699130 A319T Deleterious 0 Probably damaging 1 Large decrease −0.52 Deleterious −3.78

rs374779600 P533A Deleterious 0 Probably damaging 1 Large decrease −1.03 Deleterious −6.51

rs374779600 P533S Deleterious 0 Probably damaging 1 Large decrease −1.18 Deleterious −6.51

rs375300630 G244D Deleterious 0 Probably damaging 1 Large decrease −0.89 Deleterious −5.7

rs376573681 I272T Deleterious 0 Probably damaging 1 Large decrease −2.04 Deleterious −4.43

rs398123253 W434C Deleterious 0 Probably damaging 1 Large decrease −1.19 Deleterious −7.94

rs527336882 L365 V Deleterious 0 Probably damaging 1 Large decrease −1.59 Deleterious −2.65

rs537047205 D119A Deleterious 0 Probably damaging 0.993 Large decrease −0.6 Deleterious −4.43

rs546808806 P377L Deleterious 0 Probably damaging 0.996 Large decrease −0.62 Deleterious −7.86

rs546933529 G253C Deleterious 0 Probably damaging 1 Large decrease −1.21 Deleterious −6.19

rs555091763 I283T Deleterious 0 Probably damaging 0.996 Large decrease −1.76 Deleterious −4.22

rs558683362 M133I Deleterious 0 Probably damaging 0.997 Large decrease −0.61 Deleterious −3.49

rs564306004 G84S Deleterious 0 Probably damaging 1 Large decrease −1.25 Deleterious −4.42

rs587779401 Y625C Deleterious 0 Probably damaging 1 Large decrease −1.41 Deleterious −5.42

rs74385837 L237F Deleterious 0 Probably damaging 1 Large decrease −1.12 Deleterious −3.6

rs746018077 F495 L Deleterious 0 Probably damaging 0.977 Large decrease −0.82 Deleterious −4.36

rs746606129 Q328H Deleterious 0 Probably damaging 1 Large decrease −2.16 Deleterious −4.27

rs746766617 N348 K Deleterious 0 Probably damaging 0.994 Large decrease −0.64 Deleterious −4.96

rs747827435 N350D Deleterious 0 Probably damaging 1 Large decrease −0.6 Deleterious −4.55

rs748239393 F287C Deleterious 0 Probably damaging 1 Large decrease −1.52 Deleterious −6.72

rs748589618 L216P Deleterious 0 Probably damaging 1 Large decrease −1.61 Deleterious −6.03

rs749645656 D477G Deleterious 0 Probably damaging 0.999 Large decrease −1.54 Deleterious −4.93

rs750230093 R255W Deleterious 0 Probably damaging 1 Large decrease −0.56 Deleterious −6.87

rs750496798 R363C Deleterious 0 Probably damaging 1 Large decrease −0.82 Deleterious −7.39

rs750893089 P309T Deleterious 0 Probably damaging 1 Large decrease −1.26 Deleterious −5.62
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Table 1 List of 91 nsSNP predicted as damaging by SIFT, PolyPhen, I-Mutant, PROVEAN (Continued)

rs751396984 R383G Deleterious 0 Probably damaging 1 Large decrease −1.15 Deleterious −5.08

rs751547595 A367T Deleterious 0 Probably damaging 0.976 Large decrease −0.92 Deleterious −3.39

rs751676744 V88F Deleterious 0 Probably damaging 1 Large decrease −1.29 Deleterious −3.65

rs751792135 G78D Deleterious 0 Probably damaging 0.998 Large decrease −0.96 Deleterious −3.77

rs751861062 A204T Deleterious 0 Probably damaging 1 Large decrease −0.86 Deleterious −3.67

rs752529809 P385S Deleterious 0 Probably damaging 0.997 Large decrease −1.37 Deleterious −6.99

rs753308650 G168R Deleterious 0 Probably damaging 1 Large decrease −0.69 Deleterious −7.18

rs753875643 P232T Deleterious 0 Probably damaging 1 Large decrease −1.31 Deleterious −6.77

rs753905054 D570G Deleterious 0 Probably damaging 1 Large decrease −0.81 Deleterious −4.43

rs754154200 E182K Deleterious 0 Probably damaging 1 Large decrease −0.88 Deleterious −3.76

rs754674352 P128S Deleterious 0 Probably damaging 1 Large decrease −1.39 Deleterious −6.2

rs754681846 R368C Deleterious 0 Probably damaging 0.976 Large decrease −0.81 Deleterious −6.8

rs754876066 T194P Deleterious 0 Probably damaging 0.999 Large decrease −0.96 Deleterious −4.7

rs754949360 R383H Deleterious 0 Probably damaging 1 Large decrease −1.12 Deleterious −3.8

rs757171895 G208S Deleterious 0 Probably damaging 1 Large decrease −1.19 Deleterious −5.77

rs757706461 P183S Deleterious 0 Probably damaging 1 Large decrease −1.44 Deleterious −7.18

rs758452450 A75T Deleterious 0 Probably damaging 1 Large decrease −0.63 Deleterious −2.58

rs760900176 P229L Deleterious 0 Probably damaging 0.963 Large decrease −0.63 Deleterious −5.85

rs762037549 E582K Deleterious 0 Probably damaging 1 Large decrease −0.66 Deleterious −2.74

rs762623046 R166T Deleterious 0 Probably damaging 0.975 Large decrease −0.96 Deleterious −4.06

rs764882035 V254G Deleterious 0 Probably damaging 0.999 Large decrease −3.19 Deleterious −4.6

rs766030255 T179S Deleterious 0 Probably damaging 0.957 Large decrease −0.58 Deleterious −2.96

rs766033352 I259M Deleterious 0 Probably damaging 1 Large decrease −1.73 Deleterious −2.7

rs76722191 V322E Deleterious 0 Probably damaging 1 Large decrease −0.81 Deleterious −5.5

rs768389832 P54S Deleterious 0 Probably damaging 1 Large decrease −1.43 Deleterious −5.36

rs769331894 F177 L Deleterious 0 Probably damaging 1 Large decrease −1.02 Deleterious −5.27

rs769805145 P288A Deleterious 0 Probably damaging 1 Large decrease −1.34 Deleterious −7.62

rs770087890 G197A Deleterious 0 Probably damaging 0.999 Large decrease −1.07 Deleterious −5.27

rs771733089 R83C Deleterious 0 Probably damaging 0.997 Large decrease −0.89 Deleterious −2.72

rs772416503 P496R Deleterious 0 Probably damaging 1 Large decrease −0.7 Deleterious −7.58

rs772448566 F352 L Deleterious 0 Probably damaging 1 Large decrease −1.17 Deleterious −5.57

rs772855552 A351T Deleterious 0 Probably damaging 0.999 Large decrease −0.75 Deleterious −3.44

rs773471238 V379G Deleterious 0 Probably damaging 1 Large decrease −2.32 Deleterious −5.49

rs773908263 P81S Deleterious 0 Probably damaging 1 Large decrease −1.86 Deleterious −6.31

rs774139207 E299D Deleterious 0 Probably damaging 1 Large decrease −0.77 Deleterious −2.95

rs775542391 L114R Deleterious 0 Probably damaging 1 Large decrease −1.76 Deleterious −4.89

rs775816150 T374P Deleterious 0 Probably damaging 1 Large decrease −0.81 Deleterious −5.09

rs776561903 P55A Deleterious 0 Probably damaging 0.997 Large decrease −1.41 Deleterious −4.57

rs780165694 Y76C Deleterious 0 Probably damaging 1 Large decrease −1.09 Deleterious −4.34

rs781136336 L526P Deleterious 0 Probably damaging 0.999 Large decrease −1.11 Deleterious −3.93

rs781149866 R368H Deleterious 0 Probably damaging 1 Large decrease −1.17 Deleterious −3.47

rs794726877 G51D Deleterious 0 Probably damaging 1 Large decrease −0.59 Deleterious −5.45

rs794727017 P510R Deleterious 0 Probably damaging 1 Large decrease −0.62 Deleterious −5.79

rs794727896 T388 K Deleterious 0 Probably damaging 1 Large decrease −0.74 Deleterious −4.24

rs866224971 R447C Deleterious 0 Probably damaging 0.999 Large decrease −1.12 Deleterious −3.3
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Table 1 List of 91 nsSNP predicted as damaging by SIFT, PolyPhen, I-Mutant, PROVEAN (Continued)

rs869025584 L218P Deleterious 0 Probably damaging 0.996 Large decrease −1.63 Deleterious −5.03

rs875989946 W175R Deleterious 0 Probably damaging 1 Large decrease −1.23 Deleterious −13.14

rs375819348 P493R Deleterious 0 Probably damaging 1 Large decrease −0.82 Deleterious −8.33

rs767140903 P302R Deleterious 0 Probably damaging 1 Large decrease −0.95 Deleterious −7.79
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79% and a specificity of 93% was calculated. In order to
increase the probability of identifying pathogenic muta-
tions and minimize the risk of neglecting patients, high
sensitivity is preferable and the cut-off value of 0.43 is
recommended.

Functional SNPs in UTRs identified by UTSscan and
PolymiRTs
All of the 177 UTR SNPs were analyzed using UTRscan.
It has been shown that polymorphisms in 3′ UTR region
Table 2 List of 28 nsSNP predicted as associated with disease by PH

SNP ID AA change PHD-SNP Probability

rs76722191 V322E Disease 0.718

rs121965021 P533R Disease 0.635

rs121965029 R89Q Disease 0.841

rs121965033 L346R Disease 0.76

rs148789453 L238Q Disease 0.777

rs200448421 R628P Disease 0.817

rs368454909 D349N Disease 0.723

rs369090960 G265R Disease 0.12

rs371397270 D349G Disease 0.754

rs373037758 L256P Disease 0.881

rs374779600 P533S Disease 0.539

rs587779401 Y625C Disease 0.722

rs748239393 F287C Disease 0.668

rs750496798 R363C Disease 0.764

rs753308650 G168R Disease 0.91

rs754154200 E182K Disease 0.772

rs754876066 T194P Disease 0.747

rs757706461 P183S Disease 0.619

rs762623046 R166T Disease 0.739

rs772416503 P496R Disease 0.606

rs773908263 P81S Disease 0.725

rs775542391 L114R Disease 0.818

rs775816150 T374P Disease 0.771

rs780165694 Y76C Disease 0.646

rs794726877 G51D Disease 0.74

rs875989946 W175R Disease 0.866

rs767140903 P302R Disease 0.673

rs375819348 P493R Disease 0.681
can affect the gene expression pattern during mRNA
translation, while the polymorphisms in 5′ UTR region
affect the RNA half-life by altering the polyadenylation
[28, 29]. After comparing the functional elements for
each UTR SNP, we predicted that 6 SNPs in 5′ UTR are
related to the functional pattern changes including in-
ternal ribosome entry site (IRES) and 15-Lipoxygenase
Differentiation Control Element (15-LOX-DICE)
(Table 5). The IRES is involved in internal mRNA
ribosome binding, which allows for translation when the
D-SNP, PANTHER and SNP&GO

PANTHER Probability SNP&GO Probability

Disease 0.712 Disease 0.716

Disease 0.827 Disease 0.671

Disease 0.609 Disease 0.745

Disease 0.792 Disease 0.663

Disease 0.553 Disease 0.513

Disease 0.529 Disease 0.634

Disease 0.603 Disease 0.54

Disease 0.841 Disease 0.63

Disease 0.663 Disease 0.593

Disease 0.795 Disease 0.801

Disease 0.718 Disease 0.579

Disease 0.867 Disease 0.724

Disease 0.862 Disease 0.628

Disease 0.903 Disease 0.701

Disease 0.841 Disease 0.846

Disease 0.591 Disease 0.702

Disease 0.732 Disease 0.628

Disease 0.718 Disease 0.602

Disease 0.547 Disease 0.639

Disease 0.827 Disease 0.568

Disease 0.688 Disease 0.667

Disease 0.786 Disease 0.743

Disease 0.732 Disease 0.538

Disease 0.703 Disease 0.522

Disease 0.79 Disease 0.704

Disease 0.839 Disease 0.831

Disease 0.827 Disease 0.678

Disease 0.827 Disease 0.633



Table 3 Surface accessibility of native and mutant IDUA variants that are selected for structural analysis

SNP ID AA AA position RSA ASA Z-fit score for RSA prediction Class assignment

rs121965021 P 533 0.341 48.43 −1.149 Buried

R 0.344 78.73 −0.651 Buried

rs371397270 D 349 0.241 34.699 −0.488 Buried

G 0.392 30.819 −1.405 Exposed

rs775816150 T 374 0.095 13.149 −1.852 Buried

P 0.233 33.134 −1.134 Buried

rs772416503 P 496 0.105 14.928 0.247 Buried

R 0.164 37.533 −0.253 Buried

rs121965033 L 346 0.031 5.603 0.342 Buried

R 0.108 24.09 −0.954 Buried

AA amino acid, RSA relative surface accessibility, ASA absolute surface accessibility
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conventional mechanism of translation is ineffective.
15-LOX-DICE is a multifunctional cis-element found
in the 3′ UTR of numerous eukaryotic mRNAs. 15-
LOX-DICE binds heterogeneous nuclear ribonucleo-
proteins (hnRNP) E and K, thus mediating mRNA
stabilization and translational control. Among 19
SNPs in 3′ UTR region of IDUA gene, only one SNP
(rs733349) is predicted to disrupt 13 non-conserved
miRNA sites (ancestral allele with support <2) and
create 8 new miRNA sites (Table 6).

Phenotypic severity prediction of known disease-associated
mutations
Proper and timely treatment allocation based on pheno-
type severity prediction is essential for benefits of pa-
tients. The aforementioned bioinformatics tools are not
designed specifically for MPS I disease, and are unable
to predict the phenotype severity (Hurler, Hurler-Scheie
or Scheie). Therefore, an extensive review of previous
publications reporting pathogenic mutations of IDUA
was conducted to make inferences about phenotype
Fig. 1 Superimposed structure of native protein with modeled mutant pro
protein in white (cartoon shape), mutant protein in green, wild type residu
view of the superimpose model. Main protein backbone in white, wild typ
anion in green
severity. A total of 185 mutations have been identified,
including 86 missense mutations, 22 nonsense muta-
tions, 45 deletions/insertions and 32 splicing mutations.
By analyzing the phenotypes and mutations on both al-
leles of patients from the original reports, phenotype
prediction of each mutation was conducted manually.
Four general assumptions were used as followed: 1) only
when both alleles are predicted to be severe, the pheno-
type is Hurler; 2) if one allele is predicted to be mild
(intermediate) while the other severe, the phenotype is
Scheie (Hurler-Scheie); 3) if both alleles are intermedi-
ate, the phenotype is Hurler-Scheie or Scheie; 4) even
only one allele is predicted to be mild, the phenotype is
Scheie (illustrated in Additional file 1: Fig. S1). Further,
the crystal structure of IDUA has been elucidated
[30, 31], which was used to further confirm and rectify
the predictions made in Tables 7 and 8. Notably, due to
lack of enough information and consensus of phenotype
severity, it is difficult to make a comprehensive evalu-
ation of reliability of the original reports. Therefore, we
highlighted the severity predictions with relatively low
tein for D349G. a Overall structure of the superimposed model. Native
e (Asp349) in red, and mutated residue (Gly349) in yellow. b close-up
e reside (Asp349) in red, mutated residue (Gly349) in yellow, a chloride



Fig. 2 Close-up view of superimposed structure of native and mutant residues (a P496R; b P533R; c T374P; d L346R). The main protein core is
shown in white color while the wild type and mutated residues are shown in red and yellow color, respectively

Ou et al. Orphanet Journal of Rare Diseases  (2017) 12:125 Page 9 of 14
reliability with ‘*’ in Tables 7 and 8. All identified non-
sense mutations are severe. W402X and Q70X are the
most common nonsense mutations found in patients from
different ethnic groups. Out of 32 splicing mutations, 20
are predicted to be severe, 5 intermediate, 1 mild (IVS5-
7G > A) and 4 with unknown effects. Out of 45 deletions/
insertions, 38 are predicted to be severe, which is reason-
able due to the usual consequence of frame shift. However,
there might be some exceptions: 396insAC, c.1593delG,
and 1995del11 with Hurler-Scheie or Scheie phenotype.
1995del11 is in the final exon of IDUA, which may lead to
residual enzyme activity. c.1593delG was found to be in
trans with a missense mutation (deduced to be severe from
multiple reports) in a Hurler-Scheie patient [32]. However,
although this patient is defined as Hurler-Scheie, delayed
mental development was observed. Therefore, this patient
may actually have Hurler disease, which will make
1592delG ‘severe’. Similarly, additional evidence is
Table 4 Total energy of native and mutant structures after
energy minimization

SNP ID AA change Total energy after minimization (KJ/mol)

Native −58,850

rs121965033 L346R −57,705

rs772416503 P496R −54,038

rs121965021 P533R −22,157

rs775816150 T374P −58,766

rs371397270 D349G −58,730
required to determine the phenotypic severity of
396insAC. Missense mutations are the least severe type,
with only 31 out of 86 are predicted to be severe. P533R is
the most frequent but complicated missense mutation,
which has been found in the homozygous state in patients
with Hurler, Hurler-Scheie and Scheie phenotypes. Due to
convenience consideration, the nomenclature of muta-
tions in this study still uses the old names as reported
in previous publications. However, as suggested in the
current guideline on nomenclature [33], it will be im-
portant to follow this guideline to name newly identified
mutations.
Discussion
The identification of SNPs responsible for specific phe-
notypes with molecular approaches can be expensive
and time-consuming [34]. Therefore, computational ap-
proaches can be of great help by narrowing down the
number of missense mutations to be screened in genetic
association studies and advancing the understanding of
functional and structural aspects of the protein. Since
existing in silico methods have widely varying perform-
ance, no single method could be considered as the best
and most accurate for predicting functional SNPs. There-
fore, a combination of methods based on evolutionary in-
formation, protein structure and functional parameters
were used in order to increase the prediction accuracy.
Notably, there is no specific order for using these bioinfor-
matics tools.



Table 5 List of mRNA UTR SNPs that were predicted to be of functional significance by UTRscan server

SNP ID Nucleotide change UTR position Functional element change

rs577729544 G/A 5’ IRES → no pattern

rs200237798 G/A 5’ IRES → no pattern

rs372934646 C/A 5’ IRES → no pattern

rs530362790 G/A 5’ No pattern → 15-LOX-DICE

rs765255638 G/T 5’ IRES → no pattern

rs775542391 T/G 5’ IRES → no pattern

15-LOX-DICE 15-Lipoxygenase Differentiation Control Element, IRES internal ribosome entry site
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In this study, significant concordance was observed
between the functional consequences of nsSNPs pre-
dicted by various combinations of the tools. Out of 201
missense nsSNPs predicted to be ‘deleterious’ by SIFT,
149 (74%) were also predicted to be ‘probably damaging’
by PolyPhen. Out of 285 missense nsSNPs, 93 (47%)
were predicted to be ‘damaging’ by SIFT, PolyPhen, I-
Mutant and PROVEAN. Then, these 93 nsSNPs were
analyzed by PHD-SNP, SNPs&GO and PANTHER, and
28 (30%) were predicted to be disease-associated. Fur-
ther, the SNPs predicted by these in silico approaches
were well supported by experimental and clinical reports.
We cross-referenced the results of in silico analysis
and previously identified disease-associated mutations
in HGMD. Out of 28 missense SNPs (Table 2) pre-
dicted, 18 (64%) have been identified to be disease-
associated in the HGMD. These results demonstrated
that implementations of different algorithms could
serve as reliable and powerful tools for prioritizing
candidate functional nsSNPs.
Based on the results in this study, a step-by-step guid-

ing model for phenotype prediction of MPS I disease
Table 6 Prediction result of PolymiRTS database

SNP ID miR ID Conservat

rs733349 hsa-miR-128-3p 1

hsa-miR-148a-3p 1

hsa-miR-148b-3p 1

hsa-miR-152-3p 1

hsa-miR-216a-3p 1

hsa-miR-3681-3p 1

hsa-miR-3944-5p 1

hsa-miR-7156-3p 1

hsa-miR-4436b-3p 1

hsa-miR-4632–5p 1

hsa-miR-6735-5p 1

hsa-miR-6879-5p 1

hsa-miR-7843-5p 1

Conservation: Occurrence of the miRNA site in other vertebrate genomes in additio
genomes in which this miRNA target site occurs. miRSite: Bases complementary to
as followed. D: The derived allele disrupts a conserved miRNA site (ancestral allele w
(ancestral allele with support <2). C: The derived allele creates a new miRNA site. O
was established (Fig. 3). When a mutation is identified,
1) if it is a known disease-associated mutation, refer to
Tables 7 and 8 for phenotype severity prediction; 2) if
not, conduct the in silico analysis of coding region
SNPs and UTR SNPs, respectively. As discussed previ-
ously [35], even multiple lines of computational evi-
dence only count as a single supporting criterion for
classifying variants as pathogenic or benign. Therefore,
further confirmation should be conducted through
biochemical and/or clinical analyses. This model will
be of great use by providing a valid, time-saving, cheap
and easy-to-use method for phenotype prediction for a
variety of diseases including MPS I. Admittedly, there
are some limitations of this model. First, the in silico
analysis is not sensitive enough for phenotype severity
prediction because there are no algorithms specifically
designed for this purpose. Second, the 3D structural
analysis relies on the availability of 3D structure, ren-
dering it difficult for analyzing proteins without solved
structures. In this case, homology modeling can be ap-
plied to bridge this gap by predicting unknown protein
structures.
ion miRSite Function class

ggctgCACTGTGc N

ggcTGCACTGtgc N

ggcTGCACTGtgc N

ggcTGCACTGtgc N

ggctgCACTGTGc N

ggctgCACTGTGc N

gGCTGCACtgtgc N

GGCTGCActgtgc N

ggCTGCCCTgtgc C

ggCTGCCCTgtgc C

ggCTGCCCTgtgc C

ggCTGCCCTgtgc C

ggCTGCCCTgtgc C

n to the query genome. By clicking the hyperlink, the users can examine the
the seed region are in capital letters. Explanation of the function class is listed
ith support > = 2). N: The derived allele disrupts a nonconserved miRNA site

: The ancestral allele cannot be determined



Table 7 Phenotype/genotype correlation of missense and nonsense mutations in IDUA gene

Mutation Phenotype prediction Mutation Phenotype prediction Mutation Phenotype prediction

Y76C mild M504T intermediate V620F severe

R89W mild L535F intermediate R628P severe

R89Q mild, intermediate R619G intermediate X654C severe

A160D mild, intermediate W626R intermediate L421P unknown

C205Y mild X654G intermediate L578Q unknown

G219E mild, intermediate X654R intermediate, severe G168 V unknown

H240R mild M1 T severe F52 L unknown

E276K mild, intermediate G51D severe L396P unknown

W306 L mild, intermediate A75T severe P533R unknown

A319V mild, intermediate T103P severe H33P unknown

L346R mild, intermediate M133I severe A79V unknown

N348 K milda T141S severe G197S unknown

N350I mild, intermediate F177S severe W41X severe

Q380R mild, intermediate E182D severe C53X severe

R383H mild, intermediate E182K severe Q60X severe

T388R mild P183R severe Q63X severe

S423R mild, intermediate D203N severe Y64X severe

R492P mild G208D severe Q70X severe

S633 L mild, intermediate G208 V severe Y167X severe

M1I intermediate L218P severe Y201X severe

A75P intermediate L237R severe E274X severe

H82P intermediate L238R severe E299X severe

G84R intermediatea I270S severe Q310X severe

E178K intermediate L308P severe Y343X severe

T179R intermediate, severe D315Y severe W402X severe

F188 L intermediatea A327P severe E404X severe

G197D intermediate D349N severe W420X severe

L238Q intermediate D349Y severe Q561X severe

S260F intermediatea R363C severe Y581X severe

G265R intermediate T366P severe Q584X severe

R363H intermediate T374 N severe R619X severe

T364 M intermediate P385R severe R621X severe

A436P intermediate R489P severe W626X severe

G409R severe P496R severe R628X severe

L490P intermediate P533L severe

P496L intermediate F602I severe
awas added to predictions with relatively low reliability
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Conclusions
In conclusion, structural and functional impacts of
nsSNPs in the IDUA gene were predicted using powerful
computational tools. By predicting the possible deleteri-
ous SNPs of IDUA gene, the number of SNPs screened
in association with diseases can be narrowed down to
those that are most likely to alter gene function. Further,
a model of phenotype prediction for MPS I disease by a
combination of bioinformatics tools is established, which
will benefit diagnosis and treatment allocation of MPS I
patients. In the future, it will be essential to optimize the
SAAMP algorithm by integrating the scores from each
method with more sophisticated statistical methods, and
validate it in a broad array of genes.



Table 8 Phenotype/genotype correlation of splicing, deletions and insertions mutations in IDUA gene

Mutation Phenotype prediction Mutation Phenotype prediction Mutation Phenotype prediction

134del12 severe c.1147dupG severe IVS4-1G > A intermediate, severe

153delC severe c.1166_1171dup severe IVS4 + 1G > A intermediate

229del3 severe c.1190-1delG severe IVS5-7G > A mild

252insC severe c.1225dupG severe IVS5 + 1G > A severe

c.349delT unknown c.1244-1271del27 severe IVS6 + 1G > C severe

396insAC milda 1251delC severe IVS6 + 1G > T severe

468del3 severe 1277ins9 severe IVS7-4G > A severe

486del6 unknown 1352delG severe IVS7 + 2 T > C unknown

c.574delT severe c.1398delC severe IVS8-1G > A severe

628del5 severe c.1589insGC severe IVS8 + 4G > A intermediate

c.657dupG severe c.1593delG intermediatea IVS8 + 5G > A intermediate, severe

668insGCG severe 1702delG severe IVS9 + 1G > T severe

682insAC severe 1783del11 severe IVS9 + 2 T > G unknown

702ins10del22 severe c.1805delTinsGAACA severe IVS11-G > T severe

704ins5 severe 1839del29 severe IVS11 + 5G > A severe

740delC severe 1902del2 severe IVS11 + 5G > C severe

747delG severe c.1918_1927del10 intermediatea 3308del12 intermediate

755del5 severe 1995del11 intermediatea IVS12 + 1G > A severe

c.826_828del3 severe D444/445 mild IVS12 + 2 T > G severe

c.854delC severe c.1-2C > G severe IVS12 + 2 T > A unknown

c.883dupC severe IVS2-1G > C severe IVS12 + 3G > C severe

c.956_972 + 9delinsTA severe IVS2-3C > G unknown IVS12 + 4C > T intermediate

964delC severe IVS2 + 1G > A intermediate IVS12 + 5G > A severe

974ins12 mild IVS2 + 6C > T severe IVS12 + 5G > C unknown

c.1045_1047del3 severe IVS3-2A > G severe IVS12 + 6 T > A severe

1132del6 severe IVS3 + 1G > A severe
awas added to predictions with relatively low reliability

Fig. 3 Step-by-step guideline for phenotype prediction by in silico analysis
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Additional file 1: Figure S1. General assumptions for phenotype
severity prediction. (PPTX 245 kb)
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