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Abstract

Background: Mitochondrial diseases due to defective respiratory chain complex Il (Clll) are relatively uncommon.
The assembly of the eleven-subunit ClIl is completed by the insertion of the Rieske iron-sulfur protein, a process for
which BCSTL protein is indispensable. Mutations in the BCSTL gene constitute the most common diagnosed cause
of Clll deficiency, and the phenotypic spectrum arising from mutations in this gene is wide.

Results: A case of Clll deficiency was investigated in depth to assess respiratory chain function and assembly, and
brain, skeletal muscle and liver histology. Exome sequencing was performed to search for the causative mutation(s).
The patient’s platelets and muscle mitochondria showed respiration defects and defective assembly of ClIl was
detected in fibroblast mitochondria. The patient was compound heterozygous for two novel mutations in BCSTL,
C306A >T and c399delA. In the cerebral cortex a specific pattern of astrogliosis and widespread loss of microglia
was observed. Further analysis showed loss of Kupffer cells in the liver. These changes were not found in infants
suffering from GRACILE syndrome, the most severe BCS1L-related disorder causing early postnatal mortality, but
were partially corroborated in a knock-in mouse model of BCS1L deficiency.

Conclusions: We describe two novel compound heterozygous mutations in BCSTL causing Clll deficiency. The
pathogenicity of one of the mutations was unexpected and points to the importance of combining next generation
sequencing with a biochemical approach when investigating these patients. We further show novel manifestations in
brain, skeletal muscle and liver, including abnormality in specialized resident macrophages (microglia and Kupffer cells).
These novel phenotypes forward our understanding of ClIl deficiencies caused by BCSTL mutations.
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Background

Mitochondrial diseases are due to mutations in nuclear
or mitochondrial genes encoding proteins directly or
indirectly involved in oxidative phosphorylation (OXPHOS)
or other important mitochondrial functions [1, 2]. An
important subgroup amongst these disorders is the com-
plex II (CIII) deficiencies (ubiquinol:ferricytochrome c
oxidoreductase deficiency; cytochrome bc; complex defi-
ciency) [3]. CIII disorders have long been considered
uncommon since traditional investigations for mitochon-
drial disease, including muscle biopsy (looking for ragged
red fibers or cytochrome C oxidase (COX) negative fibers)
and routine spectrophotometric methods for OXPHOS
activity, do not necessarily reveal these deficiencies [4]. CIII
catalyzes the transfer of electrons from reduced Coenzyme
Q10 to cytochrome c, with the subsequent transfer of pro-
tons across the inner membrane of the mitochondria. It is a
homodimer in which each monomer contains eleven
subunits; two core proteins (encoded by UQCRCI and
UQCRC?2, respectively), three electron-transferring proteins
with prosthetic groups (cytochrome b, cytochrome c¢; and
Rieske iron-sulfur protein (RISP) encoded by MT-CYB,
CYCI and UQCRFS]I, respectively) and six low molecular
weight accessory proteins (encoded by UQCRH, UQCRB,
UQCRQ, UQCRI10, UQCRI1I1, respectively, plus the
N-terminal part of the RISP encoded by UQCRFSI) [5].
The assembly of this eleven-subunit complex requires the
presence of chaperones/facilitating proteins not present in
the functional mature protein, including the proteins
encoded by LYRM?7 [6], TTC19 and BCSIL [5].

The BCS1L protein is required for the insertion of the
RISP into the CIII pre-complex dimer (pre-CIII,). This
step completes the structure of the mature, catalytically
active complex. The corresponding protein in vyeast,
besl, is well characterized and has been shown to trans-
port the RISP from the matrix of the mitochondria,
where it has acquired its 2Fe-2S cluster, to the inter-
membrane space, where it assembles with the pre-CIII
[7]. BCS1L is phylogenetically conserved and homologs
are found in all eukaryotic genomes.

Diseases caused by BCSIL mutations range from the
mild Bjornstad syndrome, with brittle hair (pili torti)
and sensorineural hearing loss [8] to the fatal GRACILE
syndrome [9]. Several other phenotypes have been
described that range in-between these conditions [10—13].
The GRACILE syndrome, an acronym for Growth
Restriction, Aminaciduria, Cholestasis, Iron overload,
Lactacidosis, and Early death, is due to a specific homozy-
gous mutation so far only found in the Finnish population
(c.232A > G; p.Ser78Gly) [14], with over 40 known cases.
Since these patients die early in life, little is known about
their psychomotor development. However, in GRACILE-
like patients, and other patients with BCSIL mutations,
encephalopathy, together with tubulopathy and liver
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disease are common features. In total, less than 100
patients have been described worldwide with conditions
attributed to mutations in this gene. Knock-in mice, carry-
ing the same missense mutation as the GRACILE
syndrome patients, develop a phenotype that is similar to
that seen in neonates and thorough analysis of the renal
and hepatic pathologies have been published [15, 16].

We here describe two novel mutations in the BCSIL
gene in a patient with a severe phenotype involving
minimal psychomotor development, pronounced muscu-
lar hypotonia, aminoaciduria, growth restriction and
premature death. The necropsy revealed specific changes
in the brain (e.g. astrogliosis) that also were seen at P150
in an animal model of GRACILE syndrome (but not at
P30). Similar changes were, however, not seen in the
brains of GRACILE patients. The data suggests that
there are temporally specific changes in the course of
BCS1L deficiency. Furthermore, the patient exhibited
hypomicrogliosis and had fewer Kupffer cells (KCs)
suggesting a specific deficiency in yolk sac derived
macrophages. Our findings further extend the pheno-
typic expression of this subtype of CIII deficiency.

Methods

Platelet respirometry

The patient blood samples were collected in K,EDTA
tubes (Vacutainer, BD, Franklin Lakes, USA) via venous
puncture. As control samples, blood from healthy chil-
dren undergoing anesthesia for minor elective surgery
was used (after written informed consent from their
guardians was obtained). Platelets were isolated with
consecutive centrifugation steps as previously described
[17]. Respiration was measured in a high-resolution
oxygraph in MiR05 buffer (Oxygraph-2 k Oroboros In-
struments, Innsbruck, Austria) and data was recorded
with DatLab software 4.3. (Oroboros Instruments). The
substrate, uncoupler, inhibitor titration protocol has
been published previously [17].

Biochemical and morphological investigations in skeletal
muscle

The patient was subjected to a percutaneous muscle bi-
opsy taken from mu. tibialis anterior under local anesthesia
using a conchotome. Determination of mitochondrial
adenosine triphosphate (ATP) production rate, respiratory
chain enzyme activities, and citrate synthase activity was
carried out as previously described [18].

For histologic examination of the skeletal muscle,
standard techniques were used for light and electron
microscopy [19]. Morphologic analyses of cryostat sec-
tions included staining with hematoxylin and eosin,
modified Gomori trichrome, oil red O and periodic
acid-Schiff reagent, and incubation for ATPase,
NADH-tetrazolium reductase (NADH), succinate
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dehydrogenase (SDH), cytochrome C oxidase (COX),
and combined COX/SDH.

Cell culture

A skin biopsy was taken from the patient under local
anesthesia; fibroblasts were set up and propagated in
DMEM/F12 supplemented with 10% fetal calf serum, 1%
glutamine and penicillin/streptomycin according to our
local routine clinical protocol. The fibroblasts were
stored in liquid nitrogen until usage. Fibroblasts from a
patient without a mitochondrial disorder were similarly
obtained and used as control cells along with fibroblasts
obtained from the umbilical cords of two healthy term
newborn infants.

Protein analyses

For Blue Native PAGE (BN PAGE) analysis, mitochon-
dria were prepared from fibroblasts and frozen for
further analysis as previously described [20]. The protein
concentration was estimated using NanoDrop (Thermo
Scientific, NanoDrop Products, Wilmington, DE). Each
sample (15 pg per well) was run on a NativePAGE
Novex 4-16% Bis-Tris gel (Thermo Scientific) and
blotted to PVDF membrane using Iblot equipment (Invi-
trogen, Carlsbad, CA). After blocking in 5% dry milk the
blots were incubated with antibodies detecting BCS1L
(Abnova, Taipei, Taiwan), two subunits of CIII (RISP, MS
305; CORE1, MS 303, Mitoscience, Eugene, OR, USA),
complex IV (CIV) (subunit Va; MS 409, Mitoscience),
complex II (CII) (30 kDa IP; MS 203, Mitoscience) and
complex I (CI) subunit NDUFV1 (Sigma Aldrich,
Stockholm, Sweden).

For Western Blot analysis snap-frozen liver autopsy
samples or pelleted fibroblasts were homogenized in
cold lysis buffer (50 mM Tris-HCL pH 7.4, 150 mM
NaCl, 1% Triton X-100, 0.5% Na-deoxycholate, 0.1%
SDS, 25 mM NaF, and 1 mM EGTA) containing protease
inhibitor mix (Roche Complete Mini, Mannheim,
Germany), and cleared by centrifugation (15 000 x g at
4 °C). Equal amounts (10-20 pg) of reduced and
denatured protein were run on Tris-glycine 4-20% gels
(Bio-Rad Laboratories Inc. Hercules, CA, USA). The
resolved proteins were then transferred onto PVDF
membrane using the Trans-Blot Turbo semi-dry system
(Bio-Rad). Amount of protein transferred onto mem-
branes was visualized with Ponceau S staining and
inspected for equal loading and protein pattern. The
membranes were probed with antibodies raised against
the following: BCS1L (HPA037701, Atlas Antibodies Ltd.),
RISP (see above), CORE1 (see above), NDUFA9 (MS111,
Mitosciences), SDHB (ab14714, Abcam, Cambridge, Great
Britain), COXI (MS404, Mitosciences), VDAC1/porin
(ab154856, Abcam). Horseradish peroxidase-conjugated
secondary antibodies (Cell Signaling Technology, Danvers,
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MA) and enhanced chemiluminescence (ECL plus,
Thermo Scientific, Waltham, MA) or ECL Femto
(Thermo Scientific) (BCS1L detection) were used for de-
tection. The luminescence was recorded with Chemi-
docMP CCD imager (Bio-Rad). Sample preparation and
western blot analyses were repeated at least twice with
identical results.

DNA and RNA isolation

Genomic DNA from the patient and her parents was iso-
lated from EDTA-blood using the QIAamp DNA Midi Kit
(Qiagen, Sollentuna, Sweden). For RNA analysis, blood
was collected in PAXgene Blood RNA Tubes (Qiagen) and
total RNA was isolated using the PAXgene Blood RNA
Kit (Qiagen). Total RNA was isolated from patient and
control fibroblasts using NucleoSpin RNA kit (Macherey-
Nagel) with an on-column DNAse digestion.

Whole exome sequencing and bioinformatics

Whole exome sequencing on genomic DNA samples
from the patient and her parents was performed as
described previously [21], followed by in-house compu-
tational analysis, using the mutation identification pipeline
[21]. Only variants in genes known to cause a metabolic
disorder were analyzed. The list of genes (dbCMMS) is
published on the following site: http://karolinska.se/globa
lassets/global/kul/cmms/dbcmms.vl.1.pdf. The splice pre-
diction tools SPIDEX [22] and NetGene2 were used for
analyzing the synonymous mutation in BCSIL.

Molecular analysis of BCS1L

Sanger sequencing of the two mutations in BCSIL was
carried out following PCR amplification of genomic
DNA using the following M13-tagged primers: BC
S1L_F:AGACTTCGTACCTTCAGCAT and BCS1L_R:G
CTGTGCCAAACA GCTTCCT. RT-PCR was per-
formed on isolated RNA using the IScript cDNA Synthesis
Kit (Bio-Rad) and the following M13-tagged primers:
BCS1LcDNA_F:CCTTTCAAGATGCCACTTTC and
BCS1LcDNA_R:ACTGCTCT TTCCGCAACCAG. Sub-
sequent sequencing of the PCR products was carried out
with M13 primers using the BigDye version 3.1 sequen-
cing kit (Applied Biosystems) on a 3500x] Genetic
Analyzer (Applied Biosystems) with alignment to the
reference sequence NM_004328. A quantitative PCR
(qPCR) assay using 7 gene-specific amplicons encompass-
ing the coding exons 3-9 of the BCSIL gene was
performed by Centogene, Rostock, Germany. For
additional verification of the mutation analysis, cDNA was
prepared from DNAse-treated total RNA, isolated from
patient and control fibroblasts, using RevertAid reverse
transcriptase and random hexamers (Thermo Scientific).
Reactions without reverse transcriptase were included as
controls. Full BCSIL coding region or shorter fragments
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spanning exons 3 and 4 were amplified using Phusion
Hot-Start polymerase (Thermo Scientific) and sequenced.
For the ¢.306A > T aberrantly spliced transcript-specific
RT-PCR, Phusion polymerase buffer GC was used, the
reactions were amplified for 36 cycles, and reaction
products run on 2% agarose-TBE gels with Midori
Green (Nippon Genetics Europe) for detection.

Autopsy tissue specimen

A routine autopsy was performed on the deceased and
tissue samples were fixed in paraformaldehyde for
histology per clinical routine. Specimens from liver, heart
muscle and brain were directly snap frozen at -80 °C for
future genetic and biochemical analysis. The brain was
formalin fixed en bloc. Previously obtained and prepared
brain tissue samples from infants who died from
GRACILE syndrome due to the homozygous c.232A > G
mutation in BCSIL (n=5 [20]) and of four infants (aged
8—17 months) who died of other causes than mitochondrial
disease (pulmonary stenosis, cerebellar vascular
anomaly, congenital heart defect or SIDS) were used
for comparison. Snap frozen liver specimens from two
diseased infants were obtained via the Department of
Pathology, Helsinki University Central Hospital, Helsinki,
Finland.

Animal maintenance

Mice harboring the Bcesl mutation [15] were in
the C57BL/6]JCrl genetic background. In this strain the
homozygous mice survive up to approximately 6 months.
They were maintained at the animal facilities of University
of Helsinki, Finland, in individually ventilated cages with
12 h light/dark cycle at 22 °C. Chow (Harlan Teklad 2018)
and water was available ad libitum.

lc.232A>G

Histological processing

Bes1I“?***>C and control mice were perfused with 4%
paraformaldehyde at postnatal day 150 (P150; n =6 per
genotype). Brains were immersion fixed in 4% parafor-
maldehyde in 0.1 M sodium phosphate buffer pH 7.4 for
48 h. Half the brain was cryoprotected in 30% sucrose/
0.05% sodium azide in 50 mM Tris buffered saline (TBS)
and 40 pum frozen coronal sections were cut through
cerebrum, while cerebella were cut sagittally, and stored
in cryoprotectant solution (30% ethylene glycol/15%
sucrose/0.05% sodium azide in TBS). The other half of the
brain was cast in paraffin. Paraffinated samples (patient
and mouse brain and liver) were cut into 5 pm sections.

Immunohistochemistry

Free-floating cryosections were stained as previously de-
scribed [23]. Briefly, sections were incubated for 15 min
in 1% hydrogen peroxide in TBS and blocked for 2 h
with 15% normal serum/0.3% Triton X-100 in TBS
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(TBS-T). Primary antibody diluted in 10% normal serum
in TBS-T was incubated overnight at 4 °C and biotinylated
secondary antibody (Vector Laboratories, Burlingame,
CA, USA) for 2 h. Sections were incubated for 2 h in
Vectastain avidin-biotin-peroxidase complex (Vectastain
Elite APC kit, Vector Laboratories) and immunoreactivity
visualized by a standard diaminobenzidine-hydrogen per-
oxide reaction (Sigma). Sections were mounted onto
gelatine-chrome alum-coated microscope slides (Southern
Biotechnology Associates, Inc., Birmingham, AL, USA),
air-dried overnight and passed through a graded series of
alcohols before clearing in xylene and coverslipping with
DPX mounting media (Sigma).

Paraffin sections were dewaxed with xylene and
descending series of alcohol and incubated for 5 min in
5% hydrogen peroxide in PBS. Antigen retrieval was per-
formed by lightly boiling sections in 10 mM sodium
citrate, pH 6.0 for 20 min, followed by cooling at RT for
1 h. Sections were blocked with 5% normal serum PBS
and primary antibody diluted in 1% normal serum in
PBS was incubated overnight. Secondary antibodies were
diluted to 1% FCS in PBS and incubated for 30 min.
Nuclei were counter stained with 1 ng/ml Hoechst
33258 (Thermo Fischer Scientific, Waltham, MA, USA).
Primary antibodies were raised against the following:
GFAP (20334, DAKO, Agilent Technologies, Inc., Santa
Clara, CA, USA), RISP (HPA041863, Sigma), IBA1,
(019-19741, Wako Chemicals GmbH, Neuss, Germany),
CD11b (ab133357, Abcam).

Image analysis

All microscopic images were taken with AxioCam HRc
(Carl Zeiss AG, Oberkochen, Germany). Cortical images
were taken as several individual overlapping images and
merged together using Photomerge in Adobe Photoshop
CS4 software (Adobe Systems Inc., San Jose, USA).

Results

Patient description

The girl was the first child to unrelated, healthy parents.
The mother had no history of missed abortions/miscar-
riages. The girl was born after an uneventful pregnancy
after labor induction in the 42nd gestation week. Due to
a pathological cardiotocogram (CTG), vacuum extrac-
tion was used to assist delivery (birth weight 3500 g,
birth length 55 cm, head circumference 36.8 cm; Apgar
7-8-8). She was pale and hypotonic and respiratory
assistance (continuous positive pressure ventilation) was
needed for 20 minutes. At 2 h lactic acidemia (pH 7.0,
lactate 8.2 mmol/L, base excess -10 mmol/L) was noted,
which persisted over the following days. At day 4,
ultrasound and MRI of the head revealed a left sided grade
III intraventricular hemorrhage (IVH) without ischemic
changes. The parallel MR spectroscopy was deemed
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normal. No cause of the hemorrhage could be established.
An increasing head circumference and signs of hydro-
cephalus complicated the clinical course, but she never
needed surgical intervention.

The muscular hypotonia persisted and there was feed-
ing difficulty requiring a feeding tube over the first
month. The psychomotor development was severely
affected and at a neurological examination at 4.5 months
the development corresponded to 6 weeks. There was a
general hypotonia, the movements of the legs and arms
was largely reduced and stereotypical in quality. Eye
contact could not be established and she had almost no
sound production. She however reacted to sound and
light/dark changes. She made no intention to turn over
from back to belly and reverse. Spasticity was noted in
the legs. A neurometabolic screen was initiated (see
below) since the symptoms were considerably more
severe than expected. A repeat MRI showed a progres-
sive loss of the white matter and a secondary enlarge-
ment of the ventricles. An adequate spectroscopy could
not be performed due to the leucodystrophic changes.
Over the following months development was largely
absent. She was able to swallow formula, but not in suf-
ficient amounts and developed severe growth failure.
After a discussion in the Ethical Committee of the
hospital, the parents’ request not to put nasogastric feed-
ing tube or gastrostomy was granted (due to the dismal
prognosis). The girl passed away at 13 months of age.
The autopsy revealed severe wasting of the organs with
a body weight of 4850 g. The final cause of death was
probably myocardial infarction.

Biochemical work-up

Due to the inexplicable deterioration of the patient’s
development, not fully explained by the intraventricular
hemorrhage, an extensive biochemical work-up was ini-
tiated. No abnormalities were noted in the free carnitine
level, acylcarnitines, organic acids, glycosaminoglycans
and other complex oligosaccharides and peroxisomal
screening tests (phytanic acid, very long chain fatty acids
and plasmalogens). The plasma aminogram was normal,
however, an unspecific increase in the level of urine
amino acids was noted, indicating a potential mitochon-
drial defect (data not shown). Lactate in cerebrospinal
fluid was increased (3.4 mmol/L). Analysis of cerebro-
spinal fluid further revealed a massive increase in the
marker of brain damage neurofilament light protein
(NFL; 32600 ng/L, reference value <380) indicating a
progressive neurodegenerative disease.

Mitochondrial work-up

In intact platelets, routine respiration (platelets using en-
dogenous substrates only) was similar between the controls
and the patient. After plasma membrane permeabilization
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and saturation with CI linked substrates (malate, pyruvate
and glutamate), and subsequently the CII substrate succin-
ate, oxidative phosphorylation (OXPHOS) displayed
reduced capacity compared to controls indicating a respira-
tory dysfunction of CI or downstream thereof. Further-
more, non-phosphorylating CII-linked respiration, revealed
by the addition of the CI inhibitor rotenone, was lower as
compared to controls. Taken together, the results indicate a
limitation in electron transport downstream of CII (Fig. 1a).
Analysis of mitochondria isolated from muscle showed
decreased activities in several complexes (CI + CIII, CII +
CIII, CIV) and in overall ATP production (Fig. 1b and c).
Standard BN PAGE techniques were used to assess respira-
tory chain organization (Fig. 2a, Additional file 4: Figure S3).
The quantity of fully assembled CIII was investigated using
antibodies directed against two CIII subunits (RISP and
COREL1). There was an almost complete lack of fully as-
sembled CIII and BCS1L (both oligomer and monomer) in
patient cells. The quantities of the other complexes (CI,
CII and CIV) were lower in patient cells and in cells of
control number 3 (C3), compared to the other controls
(C1 and C2), but the ratios between the complexes were
within normal variation.

In Western blot analyses of cell lysates from liver and
fibroblasts, the BCS1L protein was also completely
missing in both tissues, whereas RISP was reduced in
liver extracts, but present in fibroblasts (Fig. 2b).

Overall the data suggests that the BCS1L protein is
largely absent causing a deficient incorporation of RISP into
the pre-CIII and hence loss of functional CIII complexes.

Genetic analysis

A genomic array analysis did not show any copy number
variations (CNVs) of significance (data not shown).
Whole exome sequencing was performed and the data
was filtered using the CMMS panel (dbCMMSv1). Two
single nucleotide variations (SNVs) were detected in the
BCSIL gene, ¢.306A >T and c.399delA. The mutation
¢.399delA is not previously described, but analysis using
several software programs (including SIFT, PolyPhen2)
indicated that it would severely affect protein function.
It causes a frameshift and introduces a premature stop
codon after 25 amino acids (p.Glul33AspfsTer25). The
c.306A > T is a synonymous mutation (p.Gly102=) and
was therefore initially deemed non-pathogenic. There-
fore, all coding exons of the BCSIL gene were analyzed
using a quantitative PCR assay (qPCR) to exclude copy
number variations (CNVs) not detected by the genomic
array analysis. No CNVs were found. The c¢.306A >T
mutation was therefore analyzed using the splice predic-
tion tools SPIDEX and NetGene2, which suggested that
it creates a cryptic splice site in exon 3. Use of this aber-
rant splice site predicts a frameshift (p.Asn103llefsTer8)
in exon 4 and hence a truncated protein. To investigate
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the effect of the ¢.306A >T mutation on splicing, and
hence its potential pathogenicity, we analyzed total RNA
extracted from the parents’ blood (as the patient was
deceased and hence no more blood could be appre-
hended). The patient’s mother was a heterozygous car-
rier of ¢.399delA and the father was heterozygous for
the ¢.306A > T mutation (Fig. 3a and b). Sequencing of
the mother’s cDNA clearly showed equal quantities of
the wild-type allele and the allele carrying c.399delA
(Fig. 3d). However, sequencing of the father’s cDNA
showed a predominance of the wild-type allele and low
level of the correctly spliced transcript carrying the
¢.306A > T mutation (Fig. 3c). The incorrectly spliced,
frameshifted transcript was not detected on chromato-
grams, suggesting that it is unstable in this cell type. To
further assess the pathogenicity of the silent c.306A > T
change RT-PCR analysis from patient and control fibro-
blasts was performed. Amplification and sequencing of

the whole BCS1L coding region verified the presence of
the frameshifted transcript from the allele carrying the
¢.399delA mutation, but the allele carrying the c.306A >
T variant was correctly spliced, suggesting low level of
the putative aberrantly spliced transcript. For a more
sensitive detection, transcript-specific RT-PCR was
performed using a reverse primer spanning the 16-bp
deletion predicted by mis-splicing. RT-PCR amplified
the predicted mutant fragment from patient RNA but
not from control RNA, whereas a similar wild-type
fragment was amplified from both (Fig. 3e). The
fragment amplified from patient RNA was extracted
from the gel and sequenced, which confirmed that it
corresponded to the predicted mis-spliced transcript
(Additional file 1: Figure S4). Thus, also the cryptic
splice site created by the c¢.306A >T change and
generating a frameshifted transcript was used in
patient fibroblasts.
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assembly and BCS1L protein from the patient (P) and controls (C1-C3) were analyzed in fibroblast mitochondria using BN PAGE technique. C1

and C2 are fibroblasts from umbilical cords from healthy pregnancies, C3 are fibroblasts from a child with no symptoms of mitochondrial disease.
Monomers (lower band) and oligomers (upper band) of BCSTL were detected using antibodies raised against this protein. ClIl was investigated
using antibodies directed against the two ClII subunits RISP (mature ClIl) and CORE1 (lower band pre-Clll, upper band mature ClIl). CI was assessed
using an antibody against NDUFV1. Antibodies against 30 kDa IP and cytochrome ¢ oxidase subunit Va (COXVa) were used to detect Cll and CIV,
respectively. The data shows a clear reduction of mature Clil complexes (with incorporated RISP) in the patient cells and loss of BCSTL protein.
The amount of the other complexes (Cl, Cll and CIV) in patient cells and C3 is less than in C1 and C2, but the ratios of the individual complexes
are similar in-between the samples. b Western blot analysis of homogenates from liver and fibroblasts from the patient (P) and two controls (C1
and C2). A loss of BCS1L protein and clear reduction in liver RISP is seen in accordance with BCS1L deficiency

Histology and macroscopical autopsy findings

Muscle

Microscopic analysis of the skeletal muscle showed
many fibers with an enhanced staining for NADH, SDH
and COX (Additional file 2: Figure S1A). In ATPase
staining they seemed to be of type 1. In Gomori
trichrome staining these fibers had an increased red
staining but no classical ragged red fibers were present.
There was also an increased lipid accumulation in the
fibers seen in oil red O staining.

Electron microscopy showed scattered fibers, which
contained numerous mitochondria and also increased
amount of lipid droplets (Additional file 2: Figure S1B).
No paracrystalline inclusions were found but some
mitochondria had structural abnormality of cristae, such
as circular cristae. The combined analyses were clearly
indicative of mitochondrial disease, however, the pattern
was not specific for a defined type.

Autopsy

The main macroscopic finding at the autopsy was a gen-
eral wasting of the internal organs and paleness indicative
of anemia. On the macroscopic level, the brain exhibited
linear focal cortical damage (Additional file 3: Figure S2).

Brain

There was a paucity of white substance in the patient
brain in general, however the myelinization was deemed
adequate. Immunohistochemical staining showed reduced
RISP reactivity in the cerebral cortex compared to the
children of similar age (Fig. 4). Astroglial activation was
seen in several areas in the patient brain, being most
distinctive in cerebral cortex and hippocampus. In all cor-
tical areas studied, astrogliosis formed a striped pattern, in
which layers III, upper part of IV, V and VI were clearly
affected, while less reactive astrocytes were seen in layer II
and lower part of the layer IV (Fig. 5a). Further, a clear
reduction of microglial cells and their processes was noted
in most of the brain regions, especially in cerebral cortex
and cerebellum (Fig. 5b). The remaining microglial cells
do not present with particularly activated phenotype.
These findings were confirmed by using two different
markers for microglia, IBA1 (Fig. 5b) and CD11b (data
not shown).

Brains of five GRACILE patients were studied to see if
they presented with similar findings as our patient. We
could not observe any significant signs of astrogliosis,
nor was the amount or phenotype of the microglial cells
changed in these brains (data not shown).
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€.306A > T inherited from the father and (b) c.399delA inherited from the mother. ¢ Sequencing of cDNA from the father showed the wild-type
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patient and control fibroblasts. The upper gel shows a 346-bp fragment amplified from the patient (P) but not from the control (C) fibroblast
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Liver

Electromicroscopic analysis of liver mitochondria
showed lack of identifiable cristae and osmiophilic
depositions (data not shown), well in accordance with
a mitochondrial disease, however the finding being an
artifact could not be ruled out. Immunohistochemical
staining with IBA1 and CD11b showed a marked
reduction of KCs in the liver parenchyma of the

patient, compared to the control individuals of similar
age (Fig. 5¢).

Animal model histology

The pathological changes in brain were also compared
to the model for BCS1L deficiency, the homozygous
Bes119****>S mouse. Immunohistochemical —analysis
showed general mild astrogliosis throughout the brain.
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In contrast to that, substantial astroglial activation was
found highly localized to the Barrel field of the primary
somatosensory cortex (S1BF). Here the activation
showed a strikingly similar pattern to the patient brain,
with strong gliosis in layers II, III, IV and VI but
preserved layer V (Fig. 6a-c). No signs of neurodegenera-
tion were detected in the Bes1[“****>S mouse brain. The
volume of cerebral cortex and cerebellum was unchanged
(data not shown), as was the thickness and the amount of
neurons in the individual layers of S1BF (data not shown).
No changes in the phenotype or amount of the microglial
cells were observed (Fig. 6d).

Discussion

Since mitochondrial genetics is complex, involving genes
in both the nuclear and mitochondrial genomes, and the
functions of many mitochondrial proteins are unknown
or only partially characterized, investigation into the
genetic cause of the mitochondrial disease in a given
patient is often extensive and difficult. In modern
clinical practice it usually involves next-generation
sequencing [2] and a thorough biochemical work-up; the
genetic data also often needs to be confirmed by analyzing

gene products and metabolites. In our case, exome
sequencing, where the raw data was filtered for genes pre-
viously described in mitochondrial disease, revealed one
suspected pathogenic mutation in a mitochondrial gene; a
deletion of one nucleotide (c.399delA) causing a frame-
shift (p.Glul33AspfsTer25) in BCSIL. Since this mutation
is predicted to lead to severe protein truncation it was
deemed very probably damaging. As the respiratory chain
investigations in the patient's muscle had revealed a
complex III defect and due to the severe phenotype, the
finding of a pathogenic mutation in BCSIL made it a
strong candidate. We therefore analyzed the whole gene
using qPCR of all coding exons, but no CNVs were
detected. Hereafter, SNVs that were previously deemed
non-pathogenic were analyzed in silico and the splice
prediction tools SPIDEX and NetGene2 suggested the
synonymous nucleotide exchange ¢.306A > T (p.Gly102=)
could introduce an intra-exonic splice site whose use
would produce a frameshifted transcript and thus be
potentially pathogenic. According to in silico prediction
the probability of use of the correct and aberrant cryptic
splice sites was essentially the same (0.69 and 0.67, re-
spectively), predicting about 50% of normally spliced
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Fig. 5 Patient brain and liver immunohistochemistry. (a) Increased immunoreactivity for the astroglial marker glial fibrillary acidic protein (GFAP)
and change in the morphology of astroglial cells, two classical signs for astroglial activation, can be seen in the occipital cortex of the patient (e-h), but not
in control brain (a-d). Activation is less pronounced in the lower part of the layer IV (g, b for ctrl), compared to the stronger activation in the upper part of
the layer IV (f, a for ctrl) and layers V-VI (h, ¢ for ctrl). The areas in the insets a-c and f-h are shown in figures d and e, respectively. (b) Immunostaining for
the microglial marker IBAT reveals loss of microglial cells and their processes in the cortex of the Lund patient (a) compared to the control (b). (c) Similar
loss of Kupffer cells can be seen in the patient liver (g) and control (b). Scale bars 100 um
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transcript and full-length protein from this allele. This is
in line with previous reports that have described truncat-
ing (loss-of-function) mutations only in combination with
missense mutations (likely partial loss-of-function) in
compound heterozygous patients [4]. In blood from the
father (heterozygous carrier), the transcript from this allele

was barely detectable suggesting decay of this message.
Further, RT-PCR and sequencing analyses of patient fibro-
blasts confirmed that both correctly and incorrectly
spliced, frameshifted transcripts are produced from this
allele. These data did not allow quantitation of wild-type
versus mutant transcript levels, but did show that mis-
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splicing takes place and, subsequently, total wild-type
mRNA is inevitably reduced to below 50% leading to re-
duced BCSIL protein (as shown by BNGE and Western
blotting) and disease manifestation. Our findings
emphasize the importance of thorough analysis of SNVs,
when the first filtered analysis of exome data does not
reveal the cause of the disease.

Parallel to the genetic investigations we analyzed iso-
lated mitochondria from patient fibroblasts, using BN
PAGE analysis. This analysis was in accordance with
BCSI1L deficiency with a clear decrease in the formation
of mature CIII from the existing pre-CIII, while the
other complexes formed normally. It is known, however,
that fibroblasts from GRACILE patients can show
normal composition of complexes [20], why a normal
BN PAGE analysis does not exclude BCS1L pathology.
In the present patient, Western blot analysis of homoge-
nates from liver and fibroblasts showed a clear decrease
(almost absence) of BCS1L protein and, in liver, also a
clear decrease in RISP. Taken together, these results
prove the pathogenicity of the mutations identified in
our patient [20].

In a recent review the phenotypes of the more than 20
different BCS1L mutations were categorized in three
groups; purely visceral, pure encephalopathy and milder
phenotypes [4]. In its most severe form, BCSIL defi-
ciency causes GRACILE syndrome [9]. The phenotype
of the current patient includes some similarities to this
syndrome; i.e. a marked postnatal metabolic lactic acid-
osis, aminoaciduria indicating proximal tubulopathy,
liver manifestation, and postnatal failure to grow. How-
ever, there are major differences: fetal growth was
normal, the metabolic acidosis was reversible maybe due
to the possibility to recruit energy fuel from glycogen
and deposits in adipose tissue not present in the severely
growth restricced GRACILE syndrome newborns.
Further, the liver manifestation was very minor, no iron
accumulation was found, the muscle and cerebral
manifestations were the major findings present already
in the neonatal period, and the survival was considerable
longer. The oldest patient with GRACILE syndrome
survived to 4 months and thorough neurohistological
analysis of brains from these patients did not reveal any
abnormalities [24, 25] as also verified in this study. In
many mitochondrial disorders, however, neuropatho-
logical changes are evident. Some features of neuropath-
ology seem to be shared across the spectrum of
mitochondrial disorders, such as gliosis, spongiform
degeneration, and neuronal loss [26] whereas others
seem more specific, e.g. in Leigh syndrome where focal
bilateral symmetrical lesions in the brainstem and basal
ganglia with vacuolation, capillary proliferation, gliosis
but relative neuronal preservation are hallmark findings
[27]. In our patient, there was a clear pattern of
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astrogliosis, specifically involving the deeper layers of
the cerebral cortex, which could be specific to this
severe phenotype (as it transcribes in the animal model)
or be a mere result of ATP depletion [27]. An interesting
finding in our patient’s brain was the general reduction
in the number of IBA1-positive microglia. In mitochon-
drial diseases, as well as in many other neuropathological
conditions, microglia are often activated and part of a
pathological response leading to neuronal death [28, 29].
In our patient, even in sites of pronounced astrogliosis
indicating hypoxia and/or ATP-depletion, the lack of a
microglial response was evident. To our knowledge, this
has not been described previously in mitochondrial
encephalopathies. Apart from being the brain’s scavengers,
microglia are important in both pre- and postnatal brain
development [29] by supporting neuronal survival, neuro-
genesis and oligodendrogenesis both in vitro [30, 31]
and in vivo [32]. This has an impact on both plasti-
city and cognition [29], and we speculate that the se-
vere neurological phenotype in our patient is, at least
partially, due to the lack of microglia already in utero.
Microglia are derived from a myeloid linage, present
already in the yolk sac, from where they populate the
brain rudiment in early embryogenesis [29, 33]. From
thereon, they self-renew within the brain and thus are
not replenished by circulating monocytes, unless there
is an ongoing inflammatory condition. We further
sought to investigate if other yolk sac-derived resident
macrophages were affected [34] and found a clear re-
duction in KCs, the resident macrophages of the liver.
These cells are important in many aspects of the liver
function, including ischemia reperfusion injury and infec-
tious disease [34]. However, our patient had no signs of se-
vere liver disease until her death at 13 months of age. To
our knowledge there are no descriptions in the literature
of KC deficiency and its relation to disease. Why there is a
specific lack of yolk sac-derived macrophages is unclear,
however an in situ hybridization study showed that BCS1L
is highly expressed in the yolk sac of mice [35] stressing
its importance in early embryonic development.

Our patient showed severe hypotonia and a muscle
biopsy revealed abnormal fibers, lipid inclusions, and
aberrant mitochondria in electron microscopic analysis.
These findings have not been seen in other BCS1L asso-
ciated pathologies [4], and stress that novel mutations in
mitochondrial genes can produce different phenotypes.

Conclusions

In this report we present the genetic, biochemical and
histological investigation of a patient with BCS1L defi-
ciency and compare the histological findings to a mouse
model. Apart from two previously not described muta-
tions in the BCSIL gene (c.306A > T and ¢.399delA), and
a thorough molecular biological and biochemical
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assessment to prove their pathogenicity, we also show
novel histological findings, including aberrant muscle
histology, a specific striped pattern of astrogliosis, and
lack of microglia and KCs. This report points out the
importance of an early thorough but focused genetic and
biochemical investigation in order to diagnose these rare
entities, requiring the combined effort of experts in sev-
eral different fields.

Additional files

Additional file 1: Figure S4. Transcript-specific primer design and
verification of mis-splicing caused by c306A > T. (A) Wild-type genomic sequence
spanning BCSTL exons 3 and 4. The locations of the mutations identified in this
study (c306A >T in exon 3 and c399delA in exon 4), the splice sites involved in
exon 3 to 4 splicing, the predicted deletion caused by aberrant splicing at 305,
and the locations of the primers used in the mis-spliced allele-specific RT-PCR are
shown. (B) Partial chromatogram from sequencing of the RT-PCR fragment
amplified using primers specific for the predicted mis-spliced transcript caused by
€306A > T nucleotide change. This PCR product was amplified from the patient
but not from the control fibroblast cONA. (PDF 2123 kb)

Additional file 2: Figure S1. Muscle histology and electron microscopy.
(A) NADH staining showing scattered fibers with enhanced reactivity. (B)
Electron microscopy showing a fiber with increased amount of lipid
droplets (L) and many mitochondria, some with structural abnormalities
(arrow). Control muscle with normal mitochondria. Bars 2 um. (PDF 4485 kb)

Additional file 3: Figure S2. Coronal section at the level of the left
amygdala. The bulk of the white matter is reduced and shows discoloration in
the temporal lobe. The corpus callosum is thin and there is moderate lateral
and third ventricular dilation. Cortical laminar necrosis is seen in the cingulate
gyrus, the superior frontal gyrus, the precentral gyrus, the inferior temporal
gyrus and the lateral occipitotemporal gyrus (arrows). (PDF 5698 kb)

Additional file 4: Figure S3. BNGE with immunblotting. The samples
were run on two gels in quadruplicate. (A). The gel was stained with
commassie blue after blotting to PVDF membrane to show that the loading
was similar; the first (lanes 2-5) and second (lanes 7-10) loading of the samples
with the ladder (lanes 1 and 6) are shown. The molecular weights of the ladder
markers are indicated. (B). For the upper blot the CORET and RISP antibodies
were used, for the second blot the BCS1L antibody and the combination of Cl
NDUFVI (to detect the subunit assembled at the final stage), CIV Va, and ClI
30kD were used, respectively. The first blot was stripped and thereafter the
antibodies against CIV COX and CI NDUFA9 were probed (remnants of the
CORE1 and RISP bands can be seen). Despite weaker bands in the patient
(lanes 1 and 6) the decrease in BCS1L and RISP is recognizable. (PDF 2082 kb)
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