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Abstract

Nude severe combined immunodeficiency is a rare inherited disease caused by autosomal recessive loss-of-function
mutations in FOXNT. This gene encodes a transcription factor essential for the development of the thymus, the
primary lymphoid organ that supports T-cell development and selection. To date nine cases have been reported
presenting with the clinical triad of absent thymus resulting in severe T-cell immunodeficiency, congenital alopecia
universalis and nail dystrophy. Diagnosis relies on testing for FOXNT mutations, which allows genetic counselling
and guides therapeutic management. Options for treating the underlying immune deficiency include HLA-matched
genoidentical haematopoietic cell transplantation containing mature donor T-cells or thymus tissue transplantation.

Experience from other severe combined immune deficiency syndromes suggests that early diagnosis, supportive
care and definitive management result in better patient outcomes. Without these the prognosis is poor due to

early-onset life threatening infections.
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Background

Nude severe combined immunodeficiency (SCID) is a rare
inherited syndrome caused by a functional deficiency of
FOXNI, a transcription factor essential for the develop-
ment and function of thymic epithelial cells (TECs) [1-3].

The thymus is the primary lymphoid organ responsible
for the development of T lymphocytes from bone marrow
derived haematopoietic precursors [4]. The unique three-
dimensional structure of TECs forms the appropriate
physiological microenvironment for the generation T-cells
able to effect immune responses against foreign pathogens
whilst being tolerant to the body’s own proteins (desig-
nated “self”) [5]. The study of loss-of-function mutations
in Foxnl in animal models has shown its critical import-
ance in TEC differentiation, homeostatic maintenance and
T-cell lymphopoiesis [3, 6-9].

Absent thymus (athymia), alopecia universalis (AU)
and nail dystrophy were first noted in 1966 in a spontan-
eously occurring phenotype in the so-called nude mouse
[9-11]. The molecular cause was identified in 1994 to be
due to an autosomal recessive deletional mutation in the
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whn gene, later renamed Foxnl [7, 12]. Thirty years after
its first description in mice, the human counterpart of
the nude phenotype was reported in two sisters present-
ing with early-onset severe immunodeficiency associated
with congenital alopecia and nail dystrophy [1, 2].
FOXN1 is required for the development of epithelial
cells in the thymus, the skin, hair and nails [7, 13-19].
As the developmental defect of TECs results in a lack of
regular T-cell development and selection, FOXN1 defi-
ciency has been classified as a rare form of severe com-
bined immunodeficiency (SCID) with absent or low T-
cells (ie. a T"®"B*NK* SCID). SCID syndromes are an
aetiologically heterogeneous group of genetic disorders,
defined by defects in T-cell development and function
and a variable impact on the development of B- and NK-
cells [20]. Consequently patients are unable to produce
protective immune responses and present in early infancy
with life-threatening infections [20]. Nude SCID is an ex-
ample of a SCID syndrome that is not due to mutation of
a gene expressed in hematopoietic cells but rather consti-
tutes an abnormality of the thymic stromal cell compart-
ment, namely TECs, essential for normal T-cell
development [21]. As with other SCIDs, early diagnosis
and management is critical in order to prevent accumula-
tion of end-organ damage due to severe infections [22].
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Disease name/synonyms

Nude SCID [2, 23] is also known as FOXN1 deficiency
[23], alymphoid cystic thymic dysgenesis (ORPHA169095)
[24], severe T-cell immunodeficiency, congenital alopecia,
nail dystrophy syndrome (MIM601705) [1] and Winged
helix deficiency [2].

Epidemiology

Nude SCID is very rare with an estimated incidence
of <1/1,000,000. Only nine cases have been reported in
the literature to date. Six patients originated from Acerno
in southern Italy; all had the same homozygous founder
mutation (R255X) carried by 6.52% of the village’s inhabi-
tants [25]. An identical mutation was later identified in a
Portuguese child born to consanguineous parents [23].
Two additional mutations have been identified in single
patients of mixed French/African (R320W) and consan-
guineous Lebanese origin (S188fs) [23, 26].

Clinical description

The human nude SCID phenotype is characterised by
the clinical triad of athymia and resultant SCID, con-
genital AU and nail dystrophy (Table 1) [1, 23, 25-27].

All reported patients presented in the first months of life
with severe, recurrent, life-threatening infections [1, 23, 25]
reflecting their severely impaired T-cell-mediated immune
response to viral, fungal and opportunistic infections as
well as live vaccines [1, 23, 28, 29]. Although B-cells are
typically present in normal numbers, antibody production
is compromised in the absence of T-cell help [1, 23, 29]
rendering patients susceptible to infections with encapsu-
lated bacteria [1, 23, 29, 30]. Patients with nude SCID may
have features of Omenn Syndrome (OS) [1, 23, 26], an in-
flammatory condition caused by expansions auto-reactive
T-cells in the setting of SCID and characterised by erythro-
derma, hepatosplenomegaly, lymphadenopathy, diarrhoea
and failure-to-thrive [31]. A detailed description of the im-
munological phenotype can be found in Tables 1 and 2
and in the section on diagnosis.

Dermatological features include congenital alopecia
affecting the scalp, eyebrows and eyelashes, and nail dys-
trophy. The latter most frequently features proximal
arciform leukonychia and koilonychia, although canali-
form dystrophy and Beau’s lines have been noted [32].
Nail dystrophy has also been found in heterozygous
carriers of FOXNI mutations [32].

CNS defects have only been described in two fetuses
from a single kindred in the highly consanguineous vil-
lage of Acerno. One displayed anencephaly and spina
bifida [13], the other had milder abnormalities including
an enlarged interhemispheric fissure and absence of the
cavum septi pellucidi and corpus callosum [14].
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Aetiology

Following the fist description of nude SCID [1], linkage
analysis and sequencing of the FOXNI gene in the two
index cases, revealed a homozygous nonsense mutation
leading to a premature stop codon at amino acid 255
(R255X) [2]. Two additional autosomal recessive FOXN1
mutations (R320W and S188fs) have since been de-
scribed [23, 26].

The forkhead box N1 (FOXN1) protein is a transcrip-
tion factor expressed in epithelial cells of the thymus,
skin, hair follicles and nail bed [13, 15, 33]. The precise
molecular mechanisms of FOXN1 function are not com-
pletely understood. It is thought to be activated by phos-
phorylation, translocate to the nucleus [34-36], bind
DNA through its forkhead domain (Fig. 1) [12, 37, 38],
and promote the transcription of genes that control the
development of epithelial cells [3]. Experimental models
have demonstrated that the N-terminal aspect of
FOXNI1 is critical for murine TEC differentiation and
the C-terminus is required for transcriptional activation
of target genes [37, 39, 40].

The reported human FOXNI mutations are located in
different domains of the molecule (Fig. 1), however all
are thought to result in loss of function. The R255X and
S188fs mutations, located in the N-terminus, both cause
a premature stop codon predicted to result in non-sense
mediated decay of the mRNA [2, 26]. The R320W muta-
tion lies in the evolutionary conserved forkhead domain
and is thought to impair the ability of the mutated pro-
tein to bind DNA and thus regulate the transcription of
target genes [23].

T-cells are derived from blood-borne haematopoietic
precursors that seed the thymus where they develop
within a meshwork of stromal cells built primarily by
TECs [41]. TECs secrete, in a FOXN1 dependent man-
ner, several chemokines, CCL25, CCL21, CXCL12, that
are required for attracting haematopoietic progenitors to
the developing thymus [42]. These progenitors subse-
quently commit to a T-cell fate with the support of
TEC-derived molecules such as the notch ligand DLL4,
which is also transcriptionally regulated by FOXNI [43].
Following an initial round of expansion, developing T-cells
are subjected to selection processes, termed “positive” and
“negative” selection, which are driven by recognition of
MHC-self antigen complexes presented on the surface of
TECs [5, 41]. This interaction leads to the selection of a T-
cell repertoire that is self-tolerant but able to respond to
foreign antigens [5, 41]. The developing T-cells then
undergo a final maturation process before exiting to the
peripheral circulation as single positive CD4 or CD8 naive
T-cells [5, 41]. FOXNT1 is a core transcriptional regulator
essential for TEC differentiation, maintenance and function
[3, 44, 45]. It is now known to control the expression of
hundreds of genes in TECs that support intrathymic T-cell
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Table 2 Table of suggested diagnostic tests and investigations with expected findings
Category Test(s) Expected findings Ref.
Genetic - FOXNT sequencing - Homozygous FOXNT mutation [2, 23, 25, 26]
- PCR for previously reported FOXNT mutations - Previously reported mutations: R255X, R320W, S188fs
Basic Immunology  Differential white cell count - Total lymphocyte count |/«/1 [1,23]
- 1 Eosinophils in Omenn syndrome
Lymphocyte subpopulations - | T-cell count (greater reduction in CD4+ T-cells Vs. CD8+) [1, 23, 26]
- —B-cell count (although | in 1 reported case)
- /1 NK-cell count
Serum Immunoglobulins /] [23]
- 1 IgE in Omenn syndrome
Specialised TRECs Severely | or absent [23]
Immunology Recent thymic emigrants (CD4 + CD31 + CD45RA+)  Severely | or absent [26]
Markers of T-cell memory (CD45RA & CD45R0O) and - Severely | naive (CD45RA+) T-cells [23, 26, 30]
activation (HLA-DR) - 1 memory (CD45RO+) T-cells
- 1 HLA-DR+ in Omenn syndrome
T-cell proliferation to mitogens - | in response to anti-CD3 &/or PHA [1, 23, 26]
- May be normal in response to PMA and ionomycin
T-cell receptor repertoire via flow cytometry or Oligoclonal [23, 26]
spectratyping
Specific antibodies to exposure and immunisation | [1]

antigens

Thoracic imaging ~ Chest x-ray/ultrasound scan/MRI

- Absent thymus
- May show evidence of respiratory tract infection

(1]

Key: Ref. References, PCR polymerase chain reaction, 1 increased, | decreased, <> normal, CD cluster of differentiation, Ig immunoglobulin, TRECs T-cell receptor

excision circles, HLA Human leucocyte antigen, PHA Phytohaemagglutinin, PMA

development [3]. In addition to CCL25 [42], CXCL12 [3],
and DLL4 [43], FOXN1 positively regulates the expression
of a number of genes involved in antigen processing and
presentation [3]. Lack of functional FOXN1 in TECs there-
fore disrupts normal thymic organogenesis and the ability
to support T-cell lineage commitment, development and
selection [8, 10, 11, 15].

In the skin and its appendages FOXNT1 is expressed in
epithelial cells that have stopped proliferating and are in

phorbol myristate acetate, MRl magnetic resonance imaging

the process of terminal differentiation [15, 33]. Studies
in mouse keratinocytes suggest that FOXNI1 controls the
expression of protein kinase B and C, molecules that are
involved in cell survival, metabolism and cell cycle pro-
gression [46, 47]. As a consequence, loss-of-function
mutations disrupt the balance between normal growth
and differentiation of these cells [15, 17-19]. Humans
and mice with FOXN1 deficiency have numerically nor-
mal hair follicles that give rise to hairs with an abnormal
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shaft causing them to curl and break off at the level of
the skin surface leading to alopecia [9, 48].

The role of FOXN1 in CNS development is not con-
firmed. Neurodevelopmental defects have not been re-
ported in mouse models and, given that the only two
fetuses with neurological abnormalities came from the
same family within a closed population [13, 14], it is
possible that another genetic aetiology was responsible
for their neurological features, however this has not been
formally investigated.

Diagnosis

Nude SCID due to FOXNI1 deficiency should be sus-
pected in infants presenting with clinical and/or labora-
tory evidence of immunodeficiency associated with
congenital AU and nail dystrophy [1, 2, 23, 25, 26, 49].

Population-based newborn screening (NBS) pro-
grammes for SCID have been introduced in several
countries [50-52]. Polymerase chain reaction (PCR) on
DNA extracted from Guthrie card blood spots is used to
quantify circularised DNA by-products generated during
TCR formation in the thymus, called T-cell receptor ex-
cision circles (TRECs) [53, 54]. Deficient levels of TRECs
identified during NBS indicate T-cell deficiency requiring
further investigation. It is predictable that FOXN1 defi-
ciency will be detectable on the basis of absent/low
TRECs although, as yet, there are no reports in the lit-
erature of patients identified via NBS. Indeed, Infants
with FOXN1 deficiency have been shown to have very
low TREC levels [23] and lack other markers of thymic
T-cell output [26]. In addition, NBS has been able to
identify patients with severe T-cell deficiency due to
other primary thymic defects including DiGeorge (DGS)
and CHARGE syndrome [52, 55].

Infants with suspected nude SCID should be immedi-
ately referred to a specialist centre experienced in and
equipped for specialised immunological tests and manage-
ment of severe immunodeficiencies [28]. This is important
as early diagnosis and treatment have been shown to
greatly impact upon outcomes, including survival, in chil-
dren with SCIDs [56]. Diagnostic tests and further investi-
gations are detailed in the text below and summarised
along with expected findings in Table 2.

Definitive diagnosis relies on testing for FOXNI muta-
tions [2] and is essential in order to guide patient man-
agement and genetic counselling [23, 26]. If the clinical
suspicion is high this may be achieved by a targeted ap-
proach using single gene Sanger sequencing or screening
for described mutations [2, 23, 25, 26]. Alternatively,
next generation sequencing techniques may be used in-
cluding targeted sequencing panels, which are increas-
ingly available for the molecular diagnosis of patients
presenting with primary immune deficiency [57-61].
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Basic immunological assessment should include enu-
meration of total lymphocytes, lymphocyte subpopula-
tions (T-, B-, and NK-cells), and serum immunoglobulins
[22, 62]. Results should be interpreted alongside age-
specific reference ranges. Total lymphocyte count may be
normal, decreased or increased [1, 23]. However, patients
have universally shown low T-cell counts [1, 23, 26], with
CD4+ T-cells more severely affected than CD8 + [1, 23].
NK- and B-cells are expected to be present, although the
latter are poorly functional in terms of specific antibody
production [1, 23, 26].

More specialised investigations include analysis of T-cell
subpopulations and receptor repertoire, markers of thymic
T-cell output, and T- and B-cell function [22, 62]. Patients
with FOXN1 deficiency have been shown to lack evidence
of efficient thymic T-cell output with increased double
negative (CD4-CD8-) T-cells in the peripheral blood
[23, 63], and severe reductions in TRECs [23], CD31+
recent thymic emigrants [26], and CD45RA+ naive
CD4+ T-cells resulting in skewing towards a CD45RO+
memory phenotype [23, 26, 30]. Their T-cells show
reduced in vitro proliferation and an oligoclonal TCR rep-
ertoire [1, 23, 26]. Those presenting with OS may have eo-
sinophilia, elevated serum IgE and presence of activated
(HLADR+), oligoclonal T-cells [22, 62].

Thoracic imaging should be performed to document
thymic hypo-/aplasia [1, 22]. Patients should be actively
screened for viral, fungal and bacterial infections via
microbiological examination of respiratory secretions
and stools, and imaging; blood should also be tested for
the presence of Epstein Barr (EBV) and cytomegalovirus
(CMV) nucleic acid [64]. It is important to note that
serological tests are unreliable due to poor B-cell
function.

Differential diagnosis

Although the triad of congenital AU, nail dystrophy and
athymia is highly indicative of FOXNI1 deficient nude
SCID, there are several differential diagnoses that warrant
consideration (Table 3). These include alternative causes
of SCID, combined immune deficiency (CID) and OS that
have a similar immunophenotype (i.e. T” loWB*NK™*), other
primary thymic defects [49], and dyskeratosis congenita
(DC). However, in DC differentiating clinical features such
as abnormal skin pigmentation and oral leucoplakia are
often present [48, 49, 65].

Genetic counselling and antenatal diagnosis

Once a molecular diagnosis is ascertained, parental car-
rier status should be assessed. In highly consanguineous
populations, testing for carrier status could also be
extended to the wider family [25]. As an autosomal reces-
sive disease, the risk of disease transmission in future
pregnancies is 1 in 4 if both parents are carriers. Antenatal
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diagnosis can be achieved via chorionic villus sampling or
amniocentesis [25, 66]. Where parents decide to continue
with an affected pregnancy, this will allow preparation
for immediate supportive and early definitive manage-
ment of the underlying immune deficiency in a spe-
cialist centre [56].

Management

Infants with suspected nude SCID require prompt refer-
ral to a specialist centre experienced in management of
SCID. Management of such cases involves supportive
care, which aims to optimise the patient’s clinical condi-
tion before timely institution of definitive treatment to
correct the underlying immune deficiency [64].

Prophylaxis and early treatment of infections is of up-
most importance and has been shown to improve out-
comes in other forms of SCIDs [28, 67]. This involves
isolation in a laminar flow room, prophylaxis against
Pneumocystis jiroveci pneumonia, fungal and viral infec-
tions, and immunoglobulin replacement [28, 62, 64, 67].
Live vaccines are contraindicated and anti-mycobacterial
treatment should be initiated in those immunised
with BCG before an immunodeficiency was suspected
[28, 62, 64]. If blood products are required these
should be CMV negative, irradiated and depleted of
leucocytes [28, 62, 64, 68]. In the setting of OS careful im-
munosuppression may be required [64].

Of the four patients that have received treatments
aimed at correcting the underlying immune deficiency,
two received HLA-matched sibling/genoidentical haem-
atopoietic cell transplants (HCT) at the age of 5 months
[1, 26, 30], and two had thymic transplants at 9 and
14 months of age [23].

One of the HCT recipients died following post-
transplant complications [26], whereas the other was
alive and infection-free when assessed 6 years later likely
due to the presence of mature donor T-cells with prolifer-
ative capacity present in the bone marrow graft [30, 69].
Experience from complete DGS suggests that HCT is un-
likely to result in high quality immune reconstitution in
the context of an underlying thymic stromal cell defect
[30, 69]. However, patients treated with HLA-matched
sibling HCT have better outcomes compared to those
treated with matched unrelated transplants [70]. In a mul-
ticentre retrospective study on the outcomes of 17 pa-
tients with complete DGS treated with HCT overall
survival was 41% after 4—11.5 years of follow-up. However,
in the subgroup that received transplants from HLA-
matched sibling donors overall survival was significantly
better at over 60% [70]. There are several possible reasons
for this: for example, the need for serotherapy using anti-
bodies directed against T-cells in patients treated with
matched unrelated transplants is likely to preclude the
survival of mature donor T-cells present in the graft
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necessary to provide cellular immunity in the absence of a
functional thymus. In addition, it has been noted that graft
versus host disease is particularly severe in patients with
athymia [70].

Given that FOXNI1 is expressed in TECs and not
haematopoietic cells, establishing a functional thymic
stromal environment is expected to provide more
complete and long-lasting immune reconstitution [23, 26].
This can be achieved via transplantation into the quadri-
ceps muscle of non-HLA matched thymic tissue obtained
from infants undergoing corrective cardiac surgery [71].
This highly specialist treatment is currently limited to two
centres worldwide [69]. Reconstitution of successful T-cell
lymphopoiesis was achieved in both FOXN1 deficient
cases treated with thymic transplantation as evidenced by
T-cell count, and the presence of TREC positive naive
CD4+ T-cells, and CD31+ recent thymic emigrants in the
peripheral blood. The newly generated T-cells proliferate
normally, display a diverse TCR repertoire, and are able to
support the production of specific antibodies directed
against T-cell dependent antigens [23, 63]. Both patients
cleared infections present pre-transplantation and
remained infection-free 3-5 years later. However, one pa-
tient developed autoimmune hypothyroidism and vitiligo
[23, 27]. Precedence for the use of thymic transplantation
in patients with FOXN1 deficiency comes from experience
in complete DGS, where patients also have an intrinsic
thymic stromal defect that precludes normal T-cell devel-
opment [69, 70, 72]. Outcomes after thymic transplant-
ation for complete DGS are at least as good as HCT with
respect to overall survival (over 70%), and the quality
of immune reconstitution is superior [69-73]. T-cell
reconstitution after thymic transplantation however
takes several months and autoimmune diseases are
observed in a third of patients principally affecting
the thyroid [69, 71, 73].

In summary, from the available evidence, the following
recommendations can be made in order to aid in the se-
lection of the most appropriate definitive treatment for
individual patients with nude SCID. HCT containing
mature donor T-cells should only be offered to patients
with an HLA-matched genoidentical sibling donor; this
treatment approach may be particularly important in sit-
uations where thymic transplantation is not readily avail-
able or in the context of pre-existing systemic viral
infection, where rapid recovery of T-cell mediated im-
munity is required [69, 70, 74]. Alternatively, thymic
transplantation could be used, without the need for
HLA-matching, provided that it is accessible in a timely
manner and that rapid T-cell recovery is not required
[74, 75]. If an HLA-matched sibling donor is not avail-
able for HCT, however, evidence from DGS suggests that
outcomes are likely to be superior with thymic trans-
plantation [70].
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Important developments within the field of regenera-
tive medicine may provide strategies for the definitive
management of thymic stromal cell defects in the future.
Induced pluripotent stem cells (iPSCs) have been used
to successfully generate thymic organoids capable of
supporting in vivo T-cell development in mouse models,
including nude mice [76-79]. Although HLA-matching
is not essential for transplantation of thymic tissue [75],
this technology could be combined with gene therapy in
order to allow the transplantation of autologous thymic
organoids generated from gene corrected iPSCs.

Prognosis

Early diagnosis, supportive care and definitive treatment
results in improved outcomes for patients with SCID
[56]. All reported nude SCID patients in whom definitive
treatments could not be established succumbed to infec-
tions very early in childhood [1, 25].

Unresolved questions

It remains unclear whether any relevant genotype-
phenotype correlation exists that could explain the vari-
ation in immunological findings observed. The patient
with a missense mutation in the forkhead domain
(R320W) demonstrated complete absence of circulating
T-cells [23], whereas patients with mutations in the N-
terminus that lead to premature stop codons (R255X
and S188fs) [2, 23, 26], have a less severe immunological
phenotype and retain a limited number of peripheral T-
cells. A possible explanation for the milder phenotype in
the latter could be re-initiation of transcription from an
alternative start codon downstream of the mutations. In-
deed two such possible alternative start codons exist
and, if formed, the resulting transcripts would have in-
tact DNA binding and transcriptional activation domains
and therefore could translate into partially functional N-
terminally truncated proteins. In contrast, the R320W
mutation is thought to impair binding of the mutated
FOXNT1 protein to DNA and thus abrogate its ability to
regulate the transcription of target genes [23]. However,
with such few cases reported and in the absence of ex-
perimental evidence to confirm or refute the above, it is
difficult to draw firm conclusions concerning possible
genotype-phenotype correlations and their mechanisms.

Conclusions

Nude SCID caused by FOXN1 deficiency should be sus-
pected in infants presenting with severe T-cell immuno-
deficiency associated with congenital AU and nail
dystrophy. Prompt diagnosis, supportive care and refer-
ral to a specialist centre for definitive treatment are of
paramount importance in order to ensure best possible
outcomes [56].
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