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Abstract

Background: Schimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder caused by biallelic mutations
in the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1)
gene. Changes in gene expression underlie the arteriosclerosis and T-cell immunodeficiency of SIOD; therefore,
we hypothesized that SMARCAL1 deficiency causes the focal segmental glomerulosclerosis (FSGS) of SIOD by
altering renal gene expression. We tested this hypothesis by gene expression analysis of an SIOD patient kidney
and verified these findings through immunofluorescent analysis in additional SIOD patients and a genetic
interaction analysis in Drosophila.

Results: We found increased expression of components and targets of the Wnt and Notch signaling pathways in
the SIOD patient kidney, increased levels of unphosphorylated β-catenin and Notch1 intracellular domain in the
glomeruli of most SIOD patient kidneys, and genetic interaction between the Drosophila SMARCAL1 homologue
Marcal1 and genes of the Wnt and Notch signaling pathways.

Conclusions: We conclude that increased Wnt and Notch activity result from SMARCAL1 deficiency and, as
established causes of FSGS, contribute to the renal disease of most SIOD patients. This further clarifies the
pathogenesis of SIOD and will hopefully direct potential therapeutic approaches for SIOD patients.

Keywords: Schimke immuno-osseous dysplasia, SMARCAL1 protein, Focal segmental glomerulosclerosis, Wnt
signaling pathway, Notch signaling pathway
Background
Schimke immuno-osseous dysplasia (SIOD, OMIM
242900) is an autosomal recessive disease; its prominent
features are facial dysmorphism, hyperpigmented macules,
focal segmental glomerulosclerosis (FSGS), spondyloepi-
physeal dysplasia, and T-cell immunodeficiency [1–3].
Additional features include hypothyroidism, abnormal
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dentition, bone marrow failure, thin hair, corneal opacities,
arteriosclerosis, cerebral ischemia, and migraine-like head-
aches [2–5].
The renal disease begins as proteinuria, progresses to

steroid-resistant nephropathy, and ultimately advances
to end-stage renal disease [4, 6]. FSGS is the predomin-
ant renal pathology and is refractory to treatment with
glucocorticoids, cyclosporine A, and cyclophosphamide
[4, 6]. Suggesting a cell autonomous mechanism for the
renal disease, renal transplantation is efficacious, and the
disease does not recur in the graft [2, 4, 5].
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Biallelic mutations of the SWI/SNF-related matrix-asso-
ciated actin-dependent regulator of chromatin, subfamily
A-like 1 (SMARCAL1) gene cause SIOD [7]. SMARCAL1
encodes a DNA annealing helicase that is a distant mem-
ber of the SWI/SNF family of ATP-dependent chromatin
remodeling proteins [8]. SMARCAL1 recognizes DNA
structure, binds to open chromatin, is involved in the
DNA damage response [9, 10] and DNA replication fork
restart [11, 12], and, along with genetic and environmental
factors, alters gene expression [13].
Gene expression changes appear critical to SIOD path-

ology. Full or partial explanations for the vascular
disease and T-cell immunodeficiency of SIOD patients
are respectively decreased expression of elastin (ELN) in
the aorta [14–16] and of interleukin 7 receptor alpha
chain (IL7R) in the T cells [17–19].
Based on these findings, we hypothesized that SMAR-

CAL1 deficiency causes the renal disease of SIOD by
altering gene expression. Studies of other glomerulopa-
thies find increased Wnt [20–23] and Notch signaling
[24–27] as causes of podocyte dysfunction. Canonical
Wnt pathway activation proceeds via inhibition of β-
catenin ubiquitination, saturation of the β-catenin
destruction complex, cytoplasmic accumulation and
nuclear translocation of newly synthesized unpho-
sphorylated β-catenin, and subsequent activation of
target gene transcription through interaction with tran-
scription factors and transcriptional co-activators [28].
Notch pathway activation involves proteolytic cleavage
of the Notch transmembrane receptor by an ADAM
metalloproteinase and the γ-secretase complex, nuclear
translocation of the released Notch1 intracellular
domain (NICD), and subsequent activation of target
gene transcription through interaction of the NICD
with transcription factors and transcriptional co-
activators [29]. Wnt and Notch signaling are critical
for kidney development and become undetectable in
the glomeruli of the postnatal kidney [26, 30].
Analyses presented herein showed upregulation of the

Wnt and Notch signaling pathways in the SIOD kidney
and genetic interaction between the Drosophila SMAR-
CAL1 homologue and genes encoding components of
the Wnt and Notch pathways. We suggest therefore that
the upregulation of the Wnt and/or Notch pathways
contributes to the renal disease in SIOD.

Methods
Patients and human tissues
The guardians of the patients referred to this study
signed informed consent approved by the Research
Ethics Board of the University of British Columbia
(Vancouver, BC, Canada). Autopsy and biopsy tissues
were obtained according to the protocol approved by
the University of British Columbia (Vancouver, BC,
Canada). The renal parameters and the SMARCAL1
mutations of the SIOD patients included in the study
are listed in Table 1 and Additional file 1: Table S1,
respectively.
In accordance with institutional policies as approved

by the Institutional Review Board (41557) at the
University of Washington, human fetal kidney from
second trimester elective terminations were provided as
de-identified specimens by the Laboratory of Develop-
mental Biology at the University of Washington
(Seattle, WA), a National Institute of Child Health &
Human Development supported program. De-identified
control specimens provided according to the protocol
H06-70283 approved by the Clinical Research Ethics
Board at the University of British Columbia (Vancouver,
BC, Canada) included renal biopsy sections from ten
pediatric patients with isolated FSGS, postmortem kidney
tissue from four pediatric patients, a skin biopsy from a
16-year-old female, and adenoma tissue from a 17-year-
old female with familial adenomatous polyposis. Sample
characteristics and use are summarized in Additional file
1: Table S2.

Drosophila melanogaster lines
The loss-of-function mutant Marcal1del and the Mar-
cal1 overexpression transgenic line pUAST-Marcal1/
CyO; tubulin-GAL4/TM3, Sb1 have been previously
described [13] (Additional file 1: Figure S1). The C96-
GAL4 UAS-Hrs/MKRS transgenic line, used to control
for non-specific interactions with the GAL4-UAS sys-
tem, was a gift from Dr. Hugo Bellen (Baylor College of
Medicine, Houston, TX, USA). All other Drosophila
stocks were obtained from the Bloomington Drosophila
Stock Center (Bloomington, IN, USA).

RNA extraction
Total RNA was extracted from flash frozen kidney pul-
verized with a Bessman tissue pulverizer (Spectrum
Laboratories, Rancho Dominguez, CA, USA) or from 8
Drosophila adult female flies of each genotype by using
the RNeasy Mini Kit (Qiagen, Toronto, ON, Canada).
Total RNA from formalin-fixed paraffin-embedded
(FFPE) fetal kidney was isolated using the RNeasy FFPE
Kit (Qiagen, Toronto, ON, Canada). Genomic DNA was
removed by on-column DNase I digestion (Qiagen,
Toronto, ON, Canada).

RNA-seq and KEGG pathway analysis
Strand-specific, paired-end RNA-seq on poly(A) RNA
was performed by Macrogen (Seoul, Korea) using the
TruSeq Stranded Total RNA Library Prep Kit (Illumina,
San Diego, CA) and the HiSeq 2000 System (Illumina,
San Diego, CA). This kit depleted the ribosomal RNA
(rRNA) using Ribo-Zero rRNA reduction chemistry.



Table 1 The renal parameters of the SIOD patients included in this study

Patient ID Age at onset
(years)

Age at death
(years)

Nephrotic
syndrome

Hypertension Proteinuria Hypercholesterolemia Renal
dialysis

Age at renal
dialysis (years)

Renal transplant Age at renal
transplantation (years)

Renal pathology

SD4b 3 8 + + + ? − n/a − n/a FSGS

SD26 <4 8 + + + + + 5 − n/a FSGS

SD60 7 13.7 + + + ? + 12.5 + 13 FSGS

SD79 <4 10 + − + − − n/a − n/a FSGS

SD120 4.5 5.4 + + + + − n/a − n/a FSGS

SD121 2.5 4.8 + − + + − n/a − n/a Diffuse podocytopathy
with early features of FSGS

SD131 3 4.6 + + + + + 3.8 − n/a Global glomerulosclerosis
likely secondary to FSGS

SD146 2 4 − − + + − n/a − n/a FSGS

Abbreviations: + present, − absent, ? unknown, FSGS focal segmental glomerulosclerosis, ID identification, n/a not applicable, SIOD Schimke immuno-osseous dysplasia
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Quantification was performed by calculating fragments
per kilobase per million mapped reads (FPKM). Prior to
fold change calculation and log2 transformation, a pseu-
docount of 1 was added to each FPKM value to reduce
the inherent bias of finding gene expression changes in
those genes where one sample has very little or no
detectable gene expression [31]. The threshold for differ-
ential gene expression between the kidney from the
SIOD patient and sex-matched unaffected control was
set at log2 fold change (i.e., log2 (FPKMSIOD + 1/FPKMU-

NAFFECTED + 1)) > 1 or < −1. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis was per-
formed with the online bioinformatic resource Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) version 6.7 available at https://david.ncifcrf.gov.

Reverse transcription
For total RNA extracted from flash frozen kidney, re-
verse transcription was performed with the RT2 First
Strand Kit (Qiagen, Toronto, ON, Canada). For total
RNA extracted from FFPE kidney or adult flies, re-
verse transcription was performed with the qScript
cDNA SuperMix (Quanta Biosciences, Gaithersburg,
MD, USA).

Gene expression arrays
The Wnt (PAHS-043Y) and Notch (PAHS-059Y) Signal-
ing Pathway Plus PCR Arrays (Qiagen, Toronto, ON,
Canada) and the RT2 Real-Time SYBR Green/Rox PCR
Master Mix (Qiagen, Toronto, ON, Canada) were used
to assess mRNA levels between the sex-matched un-
affected control and the SIOD kidney according to the
manufacturer’s specifications. The threshold for calling
differential mRNA levels was a log2 fold change > 1 or <
−1 and a p value of less than 0.05.

Quantitative PCR
SsoFast EvaGreen Supermix (Bio-Rad Laboratories,
Mississauga, ON, Canada) was used with the StepOne-
Plus Real-Time PCR System (Applied Biosystems, Thermo
Fisher Scientific, Waltham, MA, USA) for quantitative
PCR. Human GAPDH and Drosophila Gapdh2 house-
keeping genes were used as endogenous controls. The pri-
mer sequences used in this study are listed in Additional
file 1: Table S3.

Indirect immunofluorescence
FFPE sections of tissue or cell pellets were cut at 5 mi-
crons. Following deparaffinization and rehydration, heat
induced epitope retrieval was performed with sodium
citrate buffer (10 mM sodium citrate, 0.05 % Tween 20,
pH 6.0). Endogenous peroxidases were inactivated for
1 h at room temperature by incubating the sections
with peroxidase quenching buffer (3 % hydrogen
peroxide in 1× phosphate-buffered saline (PBS), 0.1 %
Tween 20, pH 7.4 (PBSTw) for unphosphorylated β-
catenin immunofluorescent staining or 1× PBS, 0.2 %
Triton X-100, pH 7.4 (PBST) for the Notch1 intracellu-
lar domain (NICD) immunofluorescent staining). Non-
specific protein binding was blocked by incubating the
sections with blocking buffer (20 % normal goat serum,
10 % bovine serum albumin, 1× casein (Vector Labora-
tories, Burlington, ON, Canada) in PBSTw or PBST)
overnight at 4 °C. Endogenous biotin, biotin receptors,
and avidin binding sites were blocked with the Avidin/
Biotin Blocking Kit (Vector Laboratories, Burlington,
ON, Canada).
Rabbit anti-unphosphorylated β-catenin (clone D13A1,

Cell Signaling Technology, Danvers, MA, USA) or rabbit
anti-NICD (ab8925, Abcam, Toronto, ON, Canada) were
used as primary antibodies. A biotinylated anti-rabbit
IgG secondary antibody was used to detect the primary
antibodies. Horseradish peroxidase-conjugated strepta-
vidin was then used to detect the biotinylated anti-
rabbit IgG secondary antibody. Subsequently, tyramide
labeling was performed using Alexa Fluor 594 tyra-
mide (Invitrogen, Thermo Fisher Scientific, Waltham,
MA, USA). ProLong Gold Antifade Mountant with
4′, 6-diamidino-2-phenylindole (DAPI) (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA) was
used to mount the sections and counterstain the
DNA. Representative images were acquired using a
20×/0.75 Plan-APOCHROMAT, 40×/1.3 oil DIC Plan-
NEOFLUAR, or 100×/1.30 oil Plan-NEOFLUAR ob-
jective lens on an Axiovert 200 inverted microscope,
an AxioCam MR microscope camera, and the AxioVi-
sion software version 4.8 (Carl Zeiss, Toronto, ON,
Canada). The glomerular β-catenin signal was quanti-
fied for each sample (see Additional file 1: Methods
for further details).
Drosophila genetics studies
We performed an overexpression and loss-of-function
genetic screen in Drosophila to determine whether the
SMARCAL1 homologue Marcal1 genetically interacts
with Wnt and Notch pathway genes (see Additional file
1: Methods for further details).
Statistics
For the KEGG pathway analysis, enrichment p values
were corrected for multiple comparisons by the Bonfer-
roni method. A p value of less than 0.05 was considered
statistically significant. For the PCR expression arrays,
data were analyzed by the 2-tailed Student’s t-test. A p
value of less than 0.05 was considered statistically
significant.

https://david.ncifcrf.gov/
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Results
Genome-wide gene expression analysis identifies
increased mRNA levels of Wnt signaling pathway and
target genes in an SIOD patient kidney
We hypothesized that SMARCAL1 deficiency leads to gene
expression changes that contribute to the pathogenesis of
the renal disease in SIOD. To test this, we used RNA-seq
to compare the transcriptomes of kidney tissue from a 5.4-
year-old male SIOD patient and a 3-year-old unaffected
male. This comparison detected 2241 genes with increased
mRNA levels (log2 fold change > 1) and 892 genes with de-
creased mRNA levels (log2 fold change < −1) in the SIOD
kidney tissue. After Bonferroni correction, KEGG pathway
analysis of the genes with decreased mRNA levels did not
reveal any significantly enriched pathways. In contrast,
KEGG pathway analysis of genes with increased mRNA
p = 0.05
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Fig. 1 Genome-wide and targeted gene expression analyses in an SIOD patien
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Targeted gene expression analysis detects increased
mRNA levels of Wnt and Notch signaling pathway and
target genes in an SIOD patient kidney
Given that upregulation of the Wnt pathway [20–23]
or the Notch pathway [24–27] is a cause of glomeru-
lopathy, we measured mRNA levels of Wnt and
Notch signaling pathway and target genes using the
RT2 Profiler PCR Arrays. These analyses showed that
p = 0.05
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of the 84 Wnt pathway-related genes tested, 30 were
differentially expressed (Fig. 1b and Additional file 1:
Table S5) and that of the 84 Notch pathway-related
genes tested, 14 were differentially expressed (Fig. 1c
and Additional file 1: Table S6). Wnt pathway-related
genes with increased mRNA levels included ligands
Fig. 2 Immunofluorescent detection of unphosphorylated β-catenin in the
Immunostaining with anti-unphosphorylated β-catenin (Alexa Fluor 594) in
nuclei were counterstained with 4', 6-diamidino-2-phenylindole (DAPI). The
right. The glomeruli have been outlined to aid in the visualization of β-catenin
images (400×) = 100 microns. Abbreviations: DAPI, 4', 6-diamidino-2-phenylind
(e.g., WNT2B, WNT4, WNT6, WNT7A, WNT10A),
components (e.g., AXIN2, FZD2, FZD7, SFRP1,
SFRP4), and targets (e.g., AXIN2, CCND2, JUN,
MMP7, MYC). Notch pathway-related genes with
increased mRNA levels included components (e.g.,
DTX1) and targets (e.g., HEYL, IL2RA).
glomerular cells of SIOD patient and unaffected control kidneys.
unaffected control kidney (a) and SIOD patient kidneys (b-h). The
boxed regions correspond to the higher magnification images on the
expression. Scale bars: overview images (200×) and higher magnification
ole
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Markers of Wnt and Notch pathway activation are
increased in the glomerular cells of postnatal SIOD
patient kidneys comparable to isolated FSGS controls
Having established that several Wnt and Notch pathway-
related genes and targets have altered expression in an
SIOD kidney, we hypothesized that increased Wnt and
Notch pathway signaling within the glomeruli contributes
to the pathogenesis of FSGS in SIOD. To test this in
additional SIOD patients, we used indirect immunofluor-
escence to profile the expression of unphosphorylated β-
Fig. 3 Immunofluorescent detection of the Notch1 intracellular domain (N
kidneys. Immunostaining with anti-NICD (Alexa Fluor 594) in positive contr
The nuclei were counterstained with 4', 6-diamidino-2-phenylindole (DAPI)
images on the right. Scale bars: overview images (400×) = 100 microns; hig
6-diamidino-2-phenylindole; NICD, Notch1 intracellular domain
catenin and the nuclear localization of the Notch1 intra-
cellular domain (NICD), which are respectively markers of
canonical Wnt and Notch pathway activation [28, 29]
(Additional file 1: Figure S2 and Fig. 3a). Compared to un-
affected controls, most SIOD samples had increased
glomerular staining for unphosphorylated β-catenin (6 of
7 patients) and nuclear NICD (6 of 8 patients) (Fig. 2,
Fig. 3, Table 2, and Additional file 1: Figure S3). Similarly,
most isolated FSGS samples had increased glomerular
staining for unphosphorylated β-catenin (8 of 9 patients)
ICD) in the glomerular cells of SIOD patient and unaffected control
ol skin (a), unaffected control kidney (b), and SIOD patient kidneys (c-j).
. The boxed regions on the left correspond to the higher magnification
her magnification images (1000×) = 10 microns. Abbreviations: DAPI, 4',



Table 2 Summary of the β-catenin and NICD immunofluorescent
analyses in SIOD and isolated FSGS patient kidney tissue

Patient ID Unphosphorylated
β-catenin expression

Nuclear NICD
expression

SIOD patients

SD4b = =

SD26 ↑ ↑

SD60 ↑ ↑

SD60 Tx = =

SD79 ↑ =

SD120 ↑ ↑

SD121 ↑ ↑

SD131 n/aa ↑

SD146 ↑ ↑

Isolated FSGS patients

FSGS-1 ↑ =

FSGS-2 ↑ ↑

FSGS-3 ↑ ↑

FSGS-4 ↑ ↑

FSGS-5 ↑ ↑

FSGS-6 ↑ ↑

FSGS-8 ↑ ↑

FSGS-9 ↑ ↑

FSGS-10 ↑ ↑

Abbreviation: = staining comparable to unaffected control kidney, ↑ increased
staining compared to unaffected control kidney, FSGS focal segmental
glomerulosclerosis, ID identification, n/a not available, NICD Notch1
intracellular domain, SIOD Schimke immuno-osseous dysplasia, Tx transplant
aNo more tissue sections were available for analysis
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and nuclear NICD (8 of 9 patients (Additional file 1:
Figure S3, Figure S4, Figure S5, and Table 2).
Markers of Wnt and Notch pathway activation are not
increased a 15-week-gestation SMARCAL1-deficient
kidney
To determine whether pathologically increased Wnt and
Notch pathway signaling in SIOD begins prenatally, we
performed indirect immunofluorescence for unpho-
sphorylated β-catenin and NICD in a 15-week-gestation
SMARCAL1-deficient kidney and age-matched un-
affected kidneys. The SMARCAL1-deficient fetal kidney
expressed comparable levels of unphosphorylated β-
catenin and NICD to the age-matched controls in both
S-shaped bodies and developing glomeruli (Additional
file 1: Figure S6 and Figure S7). In agreement with these
findings, expression analysis of several Wnt and Notch
target genes in the SMARCAL1-deficient fetal kidney
and age-matched controls demonstrated comparable
expression levels (Additional file 1: Figure S8).
Markers of Wnt and Notch pathway activation are not
increased in the transplanted kidney of an SIOD patient
Our previous studies have shown that the renal dis-
ease of SIOD is cell autonomous [5, 32]; therefore,
we hypothesized that if the increased glomerular levels of
unphosphorylated β-catenin and NICD are potentially
causative of the renal disease in SIOD, then the levels of
unphosphorylated β-catenin and NICD are not increased
in renal grafts of SIOD patients. To test this hypothesis,
we performed indirect immunofluorescence for unpho-
sphorylated β-catenin and NICD in the transplanted
kidney of an SIOD patient and observed a staining pattern
and intensity similar to that of unaffected controls for
unphosphorylated β-catenin and NICD (Additional file 1:
Figure S3, Figure S4, and Figure S5).

Drosophila Marcal1 genetically interacts with the Wnt and
Notch signaling pathways
To assess whether the upregulation of the Wnt and
Notch signaling pathways is a genetic consequence of
SMARCAL1 deficiency and not simply an end product
of the tissue pathology, we performed overexpression
and loss-of-function genetic screens in Drosophila. By
assessing the suppression or enhancement of ectopic
wing veins induced by Marcal1 overexpression [13], we
found that both Wnt and Notch pathway genes genetic-
ally interacted with Marcal1 (Additional file 1: Table S7,
Table S8, Figure S9, Figure S10, and Figure S11).
To confirm these interactions, we performed the

reciprocal analysis, i.e., analysis of the suppression or
enhancement of phenotypes associated with Wnt and
Notch pathway mutants. For the well-characterized
wing, eye, and bristle phenotypes of Notch pathway mu-
tants, Marcal1 loss and gain suppressed or enhanced
phenotypes for Notch (N) mutants, Delta (Dl) mutants,
Hairless (H) mutants, and a fringe (fng) mutant (Fig. 4a
and b, Additional file 1: Table S9 and Figure S12). No gen-
etic interaction was observed between Marcal1 loss or
gain and a Serrate (Ser) mutant (Fig. 4a and Additional file
1: Table S9).

Discussion
Herein we identify increased signaling of the Wnt and
Notch pathways as potential causes for the renal disease
in SIOD. Most SIOD kidneys exhibited increased levels
of unphosphorylated β-catenin and NICD respectively
indicating increased Wnt and Notch pathway activity.
Similarly, most isolated FSGS kidneys had upregulated
unphosphorylated β-catenin and NICD. The failure to
observe increased unphosphorylated β-catenin and
NICD in the renal graft of an SIOD patient suggests that
these molecular findings are inherent to the diseased
kidney and not induced from outside of the kidney. The
genetic interaction between Marcal1 and the Wnt and



Fig. 4 Genetic interaction of Marcal1 loss and gain with Notch pathway mutant alleles and model. a Representative wings of the mutant allele of
interest (left column), the mutant allele in the Marcal1 loss-of-function background (middle column), and the mutant allele in the Marcal1 overexpression
background (right column). Hairless (H), Delta (Dl), and Serrate (Ser) are dominant alleles on chromosome 3. Although both heterozygous
males and females were assessed, representative wings from females are shown. The Nnd-1 allele is a homozygous viable allele of Notch on chromosome
1. Although both homozygous females and hemizygous males were assessed, representative wings from hemizygous males are shown. b Representative
eyes of the mutant allele Nspl-1 (left), the mutant allele in the Marcal1 loss-of-function background (middle), and the mutant allele in the
Marcal1 overexpression background (right). The Nspl-1 allele is a homozygous viable allele of Notch on chromosome 1. Although both
homozygous females and hemizygous males were assessed, representative eyes from hemizygous males are shown. c Model of renal disease pathogenesis
in SIOD. Normal SMARCAL1 activity leads to regulated signaling of pathways and normal kidney development and function, whereas loss of SMARCAL1
activity leads to dysregulated Wnt and/or Notch signaling and in turn causes FSGS
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Notch pathway genes in Drosophila suggests that that
the altered signaling of these pathways is a direct or in-
direct consequence of SMARCAL1 deficiency.
The consistency of increased markers for both activa-

tion of the Wnt and Notch pathways in both SIOD and
isolated FSGS control kidneys suggests that activation of
both pathways underlie the renal disease of SIOD and
isolated FSGS (Fig. 4c). Activation of both pathways is
not essential for induction of SIOD renal disease or
isolated FSGS, however, because a few samples showed
activation of only one or neither of these pathways
(Fig. 4c).
Based on our observations in the 15-week-gestation

fetal kidney, the potentially pathological activation of
Wnt and Notch signaling in the SIOD kidneys appears
to arise after this stage of renal development. Further
studies are required to define precisely the timing of the
pathological activation of these pathways.
Although the Notch pathway gene expression changes

were not identified in the KEGG pathway analysis of the
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transcriptome, the high level of crosstalk between the
Wnt and Notch signaling pathways [33], and their role in
kidney development and disease prompted us to also
investigate the upregulation of the Notch pathway as a po-
tential cause for the FSGS in SIOD. Possible reasons for
the transcriptome analysis not detecting the upregulation
of the Notch pathway include pathway size bias inherent
to KEGG pathway analysis (the Wnt signaling pathway in-
cludes 141 genes, whereas the Notch signaling pathway
includes 48 genes) and tissue heterogeneity.
The mechanism by which SMARCAL1 deficiency

gives rise to tissue-specific changes in gene expression is
incompletely understood. It could arise from a direct
consequence of SMARCAL1 deficiency on the DNA
structure of a gene or of the genes encoding the tran-
scriptional regulators of that gene. Consistent with this,
we previously observed that SMARCAL1 homologues
bind transcriptionally active chromatin and modulate
gene expression [13]. Sharma et al. (2015) recently
showed that the bovine orthologue of SMARCAL1 nega-
tively and directly regulates the transcription of MYC by
altering the conformation of its promoter [34]. Alterna-
tively, because stalled replication forks induce epigenetic
changes that alter gene expression [35, 36], impedance
of DNA replication fork restart by SMARCAL1 defi-
ciency might contribute to the changes in gene expres-
sion. Consistent with the latter possibility, we recently
observed hypermethylation of the IL7R promoter in the
T cells of SIOD patients [19]; reduced IL7R expression
in human CD8+ T cells is associated with hypermethyla-
tion of the IL7R promoter [37].
A limitation of the study was the use of whole kidney to

profile differential gene expression in an SIOD kidney.
Given that the primary lesion is limited to the glomeruli,
the affected tissue represents a small fraction of the total
tissue. Although several human gene expression studies
on FSGS have used isolated glomeruli [38, 39], others have
successfully used renal biopsies [40]. Similar to other hu-
man gene expression studies of FSGS [38–40], the expres-
sion of podocyte-specific genes including NPHS1, NPHS2,
and WT1 were downregulated in the SIOD kidney, and
most of the KEGG pathways that were enriched in our list
of upregulated genes were also enriched in the prior stud-
ies, including the Wnt signaling pathway [38].
A second limitation of the study was that only unpho-

sphorylated β-catenin and nuclear NICD were examined
by immunofluorescence as measures of pathway activa-
tion. This constraint arose secondary to limited tissue.
We selected these proteins because they are the primary
effectors of and activation markers for the canonical
Wnt and Notch signaling pathways. However, Wnt sig-
naling has canonical and non-canonical pathways, and
there is also Wnt-independent β-catenin activation [41].
Notch signaling also has canonical and non-canonical
pathways as well as three Notch receptors in addition to
Notch1 [42]. Our findings nonetheless set a precedent
for future studies examining the pathogenesis of renal
disease in SIOD.

Conclusions
In summary, our findings show that the Wnt and Notch
pathways are upregulated in the SIOD patient kidney and
that Marcal1, the Drosophila SMARCAL1 homologue,
genetically interacts with Wnt and Notch pathway genes.
Based on these findings, the renal disease of SIOD is yet
another clinically distinctive feature of SIOD likely arising
through alterations of gene expression.

Additional file

Additional file 1: Supplementary Methods, Tables, and Figures.
(PDF 45904 kb)

Abbreviations
ACV: Anterior crossvein; DAPI: 4', 6-diamidino-2-phenylindole;
DAVID: Database for annotation, visualization, and integrated discovery;
FFPE: Formalin-fixed paraffin-embedded; FPKM: Fragments per kilobase per
million mapped reads; FSGS: Focal segmental glomerulosclerosis;
KEGG: Kyoto Encyclopedia of Genes and Genomes; NICD: Notch1 intracellular
domain; PBS: Phosphate-buffered saline; PCV: Posterior crossvein; qRT-
PCR: Quantitative reverse transcription polymerase chain reaction;
SIOD: Schimke immuno-osseous dysplasia; SMARCAL1: SWI/SNF-related,
matrix-associated, actin-dependent regulator of chromatin, subfamily A-like 1

Acknowledgements
We are grateful to all of the patients and family members who have
contributed to this study. The authors thank Theresa Sturby (Children’s and
Women’s Health Centre of British Columbia) for her technical expertise, and
Drs. Darren Bridgewater and Alireza Barandaran-Heravi for critical review of
this manuscript.

Funding
This work was supported in part by the New Investigator Award jointly
sponsored by the SickKids Foundation and the Canadian Institutes of Health
Research Institute of Human Development, Child and Youth Health (XG09-025
to CFB); the Michael Smith Foundation for Health Research (CI-SCH-O1899(07–
1) to CFB); The Little Giants Foundation (CFB); and the Asociacion Española de
Displasias Oseas Minoritarias (CFB). Human fetal tissue was obtained through
the Laboratory of Developmental Biology project supported by the National
Institutes of Health Award Number 5R24HD000836 from the Eunice Kennedy
Shriver National Institute of Child Health & Human Development. MM was
supported by a Four Year Doctoral Fellowship from the University of British
Columbia. CFB is a scholar of the Michael Smith Foundation for Health Research
and a Clinical Investigator of the Child & Family Research Institute.

Availability of data and materials
The dataset supporting the conclusions of this article is available in the Gene
Expression Omnibus (GEO) repository, Series record GSE75061.

Authors’ contributions
All authors have made substantial contributions to the article by
participating in the conception and design (MM, CFB), acquisition of data
(MM, CM, KB, KC, YA, AB, DB, MB, JC, EC, AD, GD, M Gentile, M Giordano,
AKG, RG, MJ, KK, E Lerut, E Levtchenko, LM, CM, BN, DP, JS, PS, UY, ZY, JZ, GH,
CFB), analysis and interpretation of data (MM, CM, KB, KC, BN, CFB), drafting
the manuscript (MM, CFB), or revising it critically for important intellectual
content (MM, CM, KB, KC, YA, AB, DB, MB, JC, EC, AD, GD, MGentile,
MGiordano, AKG, RG, MJ, KK, ELerut, ELevtchenko, LM, CM, BN, DP, JS, PS, UY,
ZY, JZ, GH, CFB). All authors read and approved the final manuscript.

dx.doi.org/10.1186/s13023-016-0519-7


Morimoto et al. Orphanet Journal of Rare Diseases  (2016) 11:149 Page 11 of 12
Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The guardians of the patients referred to this study signed informed consent
approved by the Institutional Review Board of the University of British
Columbia (Vancouver, BC, Canada). Autopsy and biopsy tissues were
obtained according to the protocol approved by the University of British
Columbia (Vancouver, BC, Canada).

Author details
1Department of Medical Genetics, University of British Columbia, Vancouver,
BC, Canada. 2Child & Family Research Institute, Vancouver, BC, Canada.
3Department of Endocrinology & Metabolism, Kanagawa Children’s Medical
Center, Yokohama, Japan. 4Department of Pediatric Nephrology, VU
University Medical Center, Amsterdam, The Netherlands. 5Département de
Biochimie et Génétique, Centre Hospitalier Universitaire d’Angers, Angers,
France. 6Department of Pediatrics, University of Verona, Verona, Italy.
7Division of Genetics, Birth Defects and Metabolism, Ann and Robert H. Lurie
Children’s Hospital of Chicago, Northwestern University Feinberg School of
Medicine, Chicago, IL, USA. 8Seattle Children’s Hospital, Seattle, WA, USA.
9Département de Pédiatrie, Hôpital Robert Debré, Paris, France.
10Department of Medical Genetics, Hospital Di Venere – ASL Bari, Bari, Italy.
11Pediatric Nephrology and Dialysis Unit, Ospedale Pediatrico Giovanni XXIII,
Bari, Italy. 12Department of Pediatrics, University of Oklahoma Health Sciences
Center, Oklahoma City, OK, USA. 13Department of Pediatrics and Child
Health, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal,
Durban, South Africa. 14Department of Pediatric Nephrology, Phoenix
Children’s Hospital, Phoenix, AZ, USA. 15Child Development and Rehabiliation
Center, Oregon Institute on Disability & Development, Oregon Health &
Science University, Portland, OR, USA. 16Department of Pathology, University
Hospitals Leuven, Leuven, Belgium. 17Department of Pediatric Nephrology,
University Hospitals Leuven, Leuven, Belgium. 18Division of Nephrology,
Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy.
19Warren Clinic Family Medicine, Tulsa, OK, USA. 20Department of Pathology,
University of Washington, Seattle, WA, USA. 21Department of Pathology,
Children’s Hospital Los Angeles and Keck School of Medicine, University of
Southern California, Los Angeles, CA, USA. 22Children’s Hospital, University of
Mainz, Mainz, Germany. 23Department of Pathology, Oregon Health and
Science University, Portland, OR, USA. 24Department of Pediatrics, Division of
Child Neurology, Dokuz Eylül University, School of Medicine, İzmir, Turkey.
25Department of Pathology, University of Oklahoma Health Sciences Center,
Oklahoma City, OK, USA. 26Department of Anatomic Pathology, Children’s
and Women’s Health Centre of British Columbia, Vancouver, BC, Canada.
27Provincial Medical Genetics Program, Department of Medical Genetics,
Children’s and Women’s Health Centre of British Columbia, 4500 Oak Street,
Room C234, Vancouver, BC V6H 3N1, Canada.

Received: 14 June 2016 Accepted: 23 September 2016

References
1. Schimke RN, Horton WA, King CR. Chondroitin-6-sulphaturia, defective

cellular immunity, and nephrotic syndrome. Lancet. 1971;2:1088–9.
2. Ehrich JH, Burchert W, Schirg E, Krull F, Offner G, Hoyer PF, et al. Steroid

resistant nephrotic syndrome associated with spondyloepiphyseal dysplasia,
transient ischemic attacks and lymphopenia. Clin Nephrol. 1995;43:89–95.

3. Spranger J, Hinkel GK, Stoss H, Thoenes W, Wargowski D, Zepp F. Schimke
immuno-osseous dysplasia: a newly recognized multisystem disease.
J Pediatr. 1991;119:64–72.

4. Boerkoel CF, O’Neill S, Andre JL, Benke PJ, Bogdanovic R, Bulla M, et al.
Manifestations and treatment of Schimke immuno-osseous dysplasia: 14
new cases and a review of the literature. Eur J Pediatr. 2000;159:1–7.

5. Clewing JM, Antalfy BC, Lücke T, Najafian B, Marwedel KM, Hori A, et al.
Schimke immuno-osseous dysplasia: a clinicopathological correlation. J Med
Genet. 2007;44:122–30.

6. Sarin S, Javidan A, Boivin F, Alexopoulou I, Lukic D, Svajger B, et al. Insights
into the renal pathogenesis in schimke immuno-osseous dysplasia: a renal
histological characterization and expression analysis. J Histochem Cytochem.
2015;63:32–44.

7. Boerkoel CF, Takashima H, John J, Yan J, Stankiewicz P, Rosenbarker L, et al.
Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-
osseous dysplasia. Nat Genet. 2002;30:215–20.

8. Yusufzai T, Kadonaga JT. HARP is an ATP-driven annealing helicase. Science.
2008;322:748–50.

9. Postow L, Woo EM, Chait BT, Funabiki H. Identification of SMARCAL1 as a
component of the DNA damage response. J Biol Chem. 2009;284:35951–61.

10. Yusufzai T, Kong X, Yokomori K, Kadonaga JT. The annealing helicase HARP
is recruited to DNA repair sites via an interaction with RPA. Genes Dev.
2009;23:2400–4.

11. Bansbach CE, Betous R, Lovejoy CA, Glick GG, Cortez D. The annealing
helicase SMARCAL1 maintains genome integrity at stalled replication forks.
Genes Dev. 2009;23:2405–14.

12. Yuan J, Ghosal G, Chen J. The annealing helicase HARP protects stalled
replication forks. Genes Dev. 2009;23:2394–9.

13. Baradaran-Heravi A, Cho KS, Tolhuis B, Sanyal M, Morozova O, Morimoto M,
et al. Penetrance of biallelic SMARCAL1 mutations is associated with
environmental and genetic disturbances of gene expression. Hum Mol
Genet. 2012;21:2572–87.

14. Curran ME, Atkinson DL, Ewart AK, Morris CA, Leppert MF, Keating MT. The
elastin gene is disrupted by a translocation associated with supravalvular
aortic stenosis. Cell. 1993;73:159–68.

15. Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, et al. Elastin is an
essential determinant of arterial morphogenesis. Nature. 1998;393:276–80.

16. Morimoto M, Yu Z, Stenzel P, Clewing JM, Najafian B, Mayfield C, et al. Reduced
elastogenesis: a clue to the arteriosclerosis and emphysematous changes in
schimke immuno-osseous dysplasia? Orphanet J Rare Dis. 2012;7:70.

17. Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in
T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20:394–7.

18. Roifman CM, Zhang J, Chitayat D, Sharfe N. A partial deficiency of
interleukin-7R alpha is sufficient to abrogate T-cell development and cause
severe combined immunodeficiency. Blood. 2000;96:2803–7.

19. Sanyal M, Morimoto M, Baradaran-Heravi A, Choi K, Kambham N, Jensen K,
et al. Lack of IL7Ralpha expression in T cells is a hallmark of T-cell
immunodeficiency in Schimke immuno-osseous dysplasia (SIOD). Clin
Immunol. 2015;161:355–65.

20. Dai C, Stolz DB, Kiss LP, Monga SP, Holzman LB, Liu Y. Wnt/beta-catenin
signaling promotes podocyte dysfunction and albuminuria. J Am Soc
Nephrol. 2009;20:1997–2008.

21. Kato H, Gruenwald A, Suh JH, Miner JH, Barisoni-Thomas L, Taketo MM, et al.
Wnt/beta-catenin pathway in podocytes integrates cell adhesion,
differentiation, and survival. J Biol Chem. 2011;286:26003–15.

22. Shkreli M, Sarin KY, Pech MF, Papeta N, Chang W, Brockman SA, et al.
Reversible cell-cycle entry in adult kidney podocytes through regulated
control of telomerase and Wnt signaling. Nat Med. 2012;18:111–9.

23. He W, Tan RJ, Li Y, Wang D, Nie J, Hou FF, et al. Matrix metalloproteinase-7
as a surrogate marker predicts renal Wnt/beta-catenin activity in CKD. J Am
Soc Nephrol. 2012;23:294–304.

24. Niranjan T, Bielesz B, Gruenwald A, Ponda MP, Kopp JB, Thomas DB, et al.
The Notch pathway in podocytes plays a role in the development of
glomerular disease. Nat Med. 2008;14:290–8.

25. Waters AM, Wu MY, Onay T, Scutaru J, Liu J, Lobe CG, et al. Ectopic notch
activation in developing podocytes causes glomerulosclerosis. J Am Soc
Nephrol. 2008;19:1139–57.

26. Lasagni L, Ballerini L, Angelotti ML, Parente E, Sagrinati C, Mazzinghi B, et al.
Notch activation differentially regulates renal progenitors proliferation and
differentiation toward the podocyte lineage in glomerular disorders. Stem
Cells. 2010;28:1674–85.

27. Murea M, Park JK, Sharma S, Kato H, Gruenwald A, Niranjan T, et al.
Expression of Notch pathway proteins correlates with albuminuria,
glomerulosclerosis, and renal function. Kidney Int. 2010;78:514–22.

28. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:
1192–205.

29. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol
Cell Biol. 2006;7:678–89.

30. Kato H, Susztak K. Repair problems in podocytes: Wnt, Notch, and
glomerulosclerosis. Semin Nephrol. 2012;32:350–6.

31. Warden CD, Yuan Y-C, Wu X. Optimal calculation of RNA-seq fold-change
values. Int J Comput Bioinfo In Silico Model. 2013;2:285–92.



Morimoto et al. Orphanet Journal of Rare Diseases  (2016) 11:149 Page 12 of 12
32. Lücke T, Marwedel KM, Kanzelmeyer NK, Hori A, Offner G, Kreipe HH, et al.
Generalized atherosclerosis sparing the transplanted kidney in Schimke
disease. Pediatr Nephrol. 2004;19:672–5.

33. Collu GM, Hidalgo-Sastre A, Brennan K. Wnt-Notch signalling crosstalk in
development and disease. Cell Mol Life Sci. 2014;71:3553–67.

34. Sharma T, Bansal R, Haokip DT, Goel I, Muthuswami R. SMARCAL1 negatively
regulates c-Myc transcription by altering the conformation of the promoter
region. Sci Rep. 2015;5:17910.

35. Schiavone D, Guilbaud G, Murat P, Papadopoulou C, Sarkies P, Prioleau MN,
et al. Determinants of G quadruplex-induced epigenetic instability in REV1-
deficient cells. EMBO J. 2014;33:2507–20.

36. Khurana S, Oberdoerffer P. Replication stress: a lifetime of epigenetic
change. Genes (Basel). 2015;6:858–77.

37. Kim HR, Hwang KA, Kim KC, Kang I. Down-regulation of IL-7Ralpha expression
in human T cells via DNA methylation. J Immunol. 2007;178:5473–9.

38. Bennett MR, Czech KA, Arend LJ, Witte DP, Devarajan P, Potter SS. Laser
capture microdissection-microarray analysis of focal segmental
glomerulosclerosis glomeruli. Nephron Exp Nephrol. 2007;107:e30–40.

39. Hodgin JB, Borczuk AC, Nasr SH, Markowitz GS, Nair V, Martini S, et al. A
molecular profile of focal segmental glomerulosclerosis from formalin-fixed,
paraffin-embedded tissue. Am J Pathol. 2010;177:1674–86.

40. Schwab K, Witte DP, Aronow BJ, Devarajan P, Potter SS, Patterson LT.
Microarray analysis of focal segmental glomerulosclerosis. Am J Nephrol.
2004;24:438–47.

41. Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, et al.
Stabilization of beta-catenin by a Wnt-independent mechanism regulates
cardiomyocyte growth. Proc Natl Acad Sci U S A. 2003;100:4610–5.

42. Ayaz F, Osborne BA. Non-canonical Notch signaling in cancer and
immunity. Front Oncol. 2014;4:345.
•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Patients and human tissues
	Drosophila melanogaster lines
	RNA extraction
	RNA-seq and KEGG pathway analysis
	Reverse transcription
	Gene expression arrays
	Quantitative PCR
	Indirect immunofluorescence
	Drosophila genetics studies
	Statistics

	Results
	Genome-wide gene expression analysis identifies increased mRNA levels of Wnt signaling pathway and target genes in an SIOD patient kidney
	Targeted gene expression analysis detects increased mRNA levels of Wnt and Notch signaling pathway and target genes in an SIOD patient kidney
	Markers of Wnt and Notch pathway activation are increased in the glomerular cells of postnatal SIOD patient kidneys comparable to isolated FSGS controls
	Markers of Wnt and Notch pathway activation are not increased a 15-week-gestation SMARCAL1-deficient kidney
	Markers of Wnt and Notch pathway activation are not increased in the transplanted kidney of an SIOD patient
	Drosophila Marcal1 genetically interacts with the Wnt and Notch signaling pathways

	Discussion
	Conclusions
	Additional file
	show [abb]
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References
	Untitled

