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SPATA5 mutations cause a distinct
autosomal recessive phenotype of
intellectual disability, hypotonia and
hearing loss
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Abstract

We examined an extended, consanguineous family with seven individuals with severe intellectual disability and
microcephaly. Further symptoms were hearing loss, vision impairment, gastrointestinal disturbances, and slow and
asymmetric waves in the EEG. Linkage analysis followed by exome sequencing revealed a homozygous variant in
SPATA5 (c.1822_1824del; p.Asp608del), which segregates with the phenotype in the family. Molecular modelling
suggested a deleterious effect of the identified alterations on the protein function. In an unrelated family, we
identified compound heterozygous variants in SPATA5 (c.[2081G > A];[989_991delCAA]; p.[Gly694Glu];[.Thr330del]) in
a further individual with global developmental delay, infantile spasms, profound dystonia, and sensorineural hearing
loss. Molecular modelling suggested an impairment of protein function in the presence of both variants.
SPATA5 is a member of the ATPase associated with diverse activities (AAA) protein family and was very recently
reported in one publication to be mutated in individuals with intellectual disability, epilepsy and hearing loss. Our
results describe new, probably pathogenic variants in SPATA5 that were identified in individuals with a comparable
phenotype. We thus independently confirm that bi-allelic pathogenic variants in SPATA5 cause a syndromic form of
intellectual disability, and we delineate its clinical presentation.
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Main text
Intellectual disability is characterized by significant limi-
tations in both intellectual functioning and in adaptive
behavior and has a prevalence of about 2 % of the popu-
lation [1]. The cause for intellectual disability is often
genetic and therefore, it is one of the most common rea-
sons for genetic counselling and poses a major socio-
economic burden worldwide. Recent studies have shown
that in many cases point mutations, which occur de novo
or are inherited through autosomal recessive or X-linked
traits, are responsible for the phenotype [2, 3]. Very

recently, several affected individuals with various variants
in SPATA5 (MIM 616577) have been reported [4, 5]. In
our cohort of about 200 families with intellectual disabil-
ity, we identified a homozygous deletion of one amino
acid in SPATA5 in a consanguineous family with seven
affected members. In an unrelated affected individual with
sporadic global developmental delay and epileptic enceph-
alopathy we identified compound heterozygous variants in
SPATA5 in the context of clinical exome sequencing.
This study was approved by the Ethics Committees of

the University Bonn and the University Erlangen-
Nuremberg in Germany and informed consent of all ex-
amined persons or of their guardians recruited in the
course of this study was obtained. Inclusion of a sin-
gle individual followed at the Children’s Hospital of
Philadelphia, USA was IRB-exempt.
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Family MR003 is a large Syrian family with multiple
consanguineous marriages and seven affected individuals
(Fig. 1). Affected individuals IV-12 and IV-13 are uncle
and aunt of the affected individuals V-1 to V-5. Preg-
nancy, delivery, and perinatal period were reported to be
uneventful for all individuals of family MR003 except for
individuals IV-13, V-3, and V-4. Individual IV-13 was
born with cyanosis and neonatal hypotonia; individuals
V-3 and V-4 had neonatal hypotonia after an unremark-
able delivery. All affected individuals reached develop-
mental mile stones including gross motor milestones
such as unsupported sitting and walking at a late normal
range. Affected individuals were examined at the age of
41 years (IV-12), 39 years (IV-13), 22 years (V-1),
20 years (V-2), 12 years (V-3), 5 years (V-2) and 2 years
(V-5). Common symptoms of all affected members are
moderate to severe intellectual disability, severely limited
receptive and expressive speech, and microcephaly
(Additional file 1: Table S1). Seizures were not reported
in either of the family members. EEG in V-1 showed
slow and asymmetric fronto-central waves. Individuals
IV-12, IV-13, and V-2 presented with hearing impair-
ment as determined by Auditory Evoked Potential, other
affected individuals were not tested, thus, we cannot ex-
clude mild hearing impairment in these individuals.

Individuals IV-12 and IV-13 presented with vision im-
pairment especially at night. Gastrointestinal distur-
bances, such as constipation, are observed in individuals
IV-12 and IV-13. All affected individuals demonstrate
autistic features including reduced eye contact. Add-
itionally, V-2 shows stereotypic movements and V-1 has
some degree of auto-aggression and is easily frightened.
Individual V-3 presented with central muscular hypo-
tonia and individuals IV-12 and IV-13 have a decreased
ability to ambulate, like through a combination of cen-
tral muscular hypotonia and decreased coordination. All
affected individuals have a normal sleep pattern. Facial
features include a long nose with underdeveloped alae
nasi and arched eyebrows. Apart from presenting with
microcephaly, growth parameters were in the normal
range for all individuals.
Metabolic work-up of individual V-2 showed normal

amino acids and urinary organic acids. Karyotype and
ocular fundus was unremarkable. Brain MRI for IV-13 at
an adult age indicated brain atrophy. Brain MRIs for in-
dividuals V-1 and V-2 at ages of 2 and 4 years, respect-
ively, were unremarkable.
In family B, an outbred family of European ancestry,

only one child, B1, is affected (Fig. 2a). The proband was
born after a pregnancy complicated by maternal diabetes
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Fig. 1 Pedigree and pictures of family MR003

Buchert et al. Orphanet Journal of Rare Diseases  (2016) 11:130 Page 2 of 7



mellitus. Delivery was uneventful at 41 weeks of gesta-
tion. The affected individual was hypotonic and pro-
foundly delayed with failure to achieve any major
developmental milestones. He was referred to early
intervention for developmental delay at a young age. He
failed initial brainstem auditory evoked responses
(BAERS) as a neonate. A hearing test was repeated later
on and he was diagnosed with sensorineural hearing
loss. At 8 months he had a percutaneous gastrostomy
tube placed for failure to thrive. The proband started
having infantile spasms at the age of 8 months. A head
CT and brain MRI were unremarkable. A video EEG
showed hypsarrythmia. He was treated with Lacosamide
and Levetiracetam. At 17 months he was admitted to
the Children’s Hospital of Philadelphia for break-
through seizures in the setting of pneumonia, but has
remained seizure-free with an unremarkable follow-up
EEG. Ophthalmologic examination revealed poor vision

likely secondary to cortical blindness. Cardiology evalu-
ation noted a fenestrated atrial septal defect. The pro-
band had a movement disorder, which developed around
10 months of age, characterized by profound dystonic
posturing of upper limbs greater than lower limbs with
neck involvement in the absence of spasticity. At
17 months, the proband was unable to sit independently
or roll over. He was able to hold objects intermittently
but unable to transfer them. He did not smile or coo.
His growth parameters were in the low normal range
(weight <5th percentile, length 9th percentile and head
circumference 5th percentile). He had divergent strabis-
mus, low nasal bridge and broad eyebrows, roving eye
movements, scoliosis, and a sacral tuft of hair.
Linkage analysis for family MR003 was performed

using the genotype data of Human610-Quad DNA Ana-
lysis BeadChips (Illumina, San Diego, CA, USA) and re-
sulted in the identification of single candidate region on

Fig. 2 a Pedigree and picture of family B. b Schematic structure of SPATA5 and identified alterations. Previously reported variants are indicated in
black, the variants identified in this study c.1822_1824del; p.Asp608del, c.2081G > A; p.Gly694Glu and c.989_991delCAA; p.Thr330del are indicated
in red
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chromosome 4:122,982,313-133,038,675 bp, with a size
of 10 Mb as previously published [6]. Whole-exome se-
quencing (WES) was performed on an Illumina Genome
Analyzer IIx (Illumina, San Diego, CA, USA) after en-
richment with the SureSelect Human All Exon Kit (Agi-
lent, Santa Clara, Ca, USA) as described previously [7].
Data was filtered for rare variants that were annotated
with a minor allele frequency of ≤0.01 in the databases
of 1000 Genomes [8] and Exome Variant Server (EVS),
and that are within the candidate region. Then variants
were prioritized according to predicted effect on protein
sequence, and according to function of the encoded pro-
tein. Variants were validated and tested for segregation
using Sanger sequencing. We identified a single homozy-
gous candidate variant in SPATA5 (NM_145207):
c.1822_1824del; p.Asp608del that was predicted as dam-
aging by in silico prediction tools.
Genomic DNA of affected individual B1 was extracted

from blood with the AutoGen DNA extraction kit fol-
lowing manufacturer’s guidelines (AutoGen, Holliston,
MA, USA). The WES library was prepared using the
SureSelectXT Human All Exon V5 kit following stand-
ard manufacturer protocol (Agilent Technologies, Santa
Clara, CA, USA) and sequenced on the Illumina HiSeq
2500 using the 2 × 100 bp kit, with the targeted average
coverage of 150x in the proband and 100x in the mother
(Illumina, San Diego, CA, USA). Alignment and variant
calling were performed with an in-house bioinformatics
pipeline. Variants with a minor allele frequency of
<0.005 in the Exome Aggregation Consortium database
and expected to affect coding/splicing of the protein, or
were present in the Human Gene Mutation Database
(HGMD) [9] were included in the analysis using the
Bench Lab NGS software (Cartagenia, Cambridge, MA,
USA). A pair of variants in SPATA5: c.989_991delCAA;
p.Thr330del and c.2081G > A; p.Gly694Glu was identi-
fied based on their compound heterozygous inheritance.
The proband’s mother was heterozygous for the
p.Thr330 deletion. The p.Gly694Glu variant was not
present in the mother; it is presumably inherited from
the father who was not available. The c.989_991delCAA;
p.Thr330del variant was previously described in a pro-
band with overlapping phenotype [4].
To determine the effect of the identified alterations on

the phenotype the amino acid sequence of SPATA5 was
analysed using PFAM [10] and two AAA ATPase do-
mains spanning residues 390–523 and 664–796, respect-
ively, were identified. Then, modeling was performed
with Modeller 9.9 [11] using the crystal structure of the
hexamieric ATPase p97 (PDB code: 3CF2) [12] as a tem-
plate. The resulting model was verified using PRO-
CHECK [13] and WHATCHECK [14] and revealed a
good stereochemistry and no steric clashes. The dele-
tions p.Asp608del and p.Thr330del were created with

ModLoop [15, 16]. RasMol [17] was used for structure
analysis and visualization.
The SPATA5 model (Fig. 3a) reveals that p.Asp608 is lo-

cated at the subunit interface and forms stabilizing inter-
actions with p.Lys517 of the adjacent subunit (Fig. 3b).
Deletion of p.Asp608 causes a loss of the salt-bridge with
p.Lys517 (Fig. 3c). In addition, the shorter loop in the mu-
tant causes an unfolding of the α-helix, which is present
N-terminally adjacent to the site of variant in the wildtype
(Fig. 3b, c). These effects are expected to reduce the stabil-
ity of both the hexamer and also of the individual subunits
consequently leading to reduced enzymatic activity.
Similar to p.Asp608, p.Gly694 is also located at the sub-

unit of the interfaces in the hexameric enzyme (Fig. 3d). A
replacement of p.Gly694 by glutamate causes electrostatic
repulsion with p.Asp630 of the adjacent protein subunit
(Fig. 3e). Therefore, this alteration is expected to decrease
hexamer stability in a similar fashion as p.Asp608del.
However, the effect on the fold of the individual subunits
appears less severe than for p.Asp608del.
Due to lack of sequence similarity to known proteins,

the sequence stretch around p.Thr330 cannot be mod-
elled in atomic detail. The location p.Thr330 in the N-
terminal proximity of the globular AAA ATPase domain
suggests that a deletion of this residue might still affect
protein function and stability, although to a lesser extent
compared to the p.Asp608del or p.Gly694Glu variants.
The p.Thr330del variant was previously described as
pathogenic [4].
SPATA5 encodes a protein of 892 amino acids, which

is part of the ATPase associated with diverse activities
(AAA) protein family. Proteins of this family are charac-
terized by their ATPase domain, which has a length of
200–250 amino acids and is highly conserved. AAA pro-
teins usually form hexamer or heptamer rings with a
central pore [18]. By hydrolysing ATP they can generate
mechanical force, which is used for conformational re-
modelling of proteins or polynucleotides. Thus, mem-
bers of the AAA protein family are thought to play an
important role in protein degradation, DNA replication,
membrane fusion events and in the movement of micro-
tubules in various cellular compartments [18].
Variants in LONP1, a member of the closely related AAA

+ family, have been reported to be causative for CODAS
syndrome (MIM 600373). CODAS syndrome is character-
ized by intellectual disability, muscular hypotonia, epilepsy,
sensorineural hearing loss, short stature, and skeletal abnor-
malities [19]. In addition, mutations in genes encoding for
members of the AAA protein family have been reported in
additional disorders including Zellweger syndrome (MIM
214100, PEX1), hereditary spastic paraplegia type 7 (MIM
607259, SPAST, SPG7), early-onset torsion dystonia (MIM
605204, TOR1A), and Paget disease with frontotemporal
dementia (MIM 601023, VCP) [20–25]. Although these
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Fig. 3 (See legend on next page.)
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disorders differ significantly in their clinical presentation,
neurological features are the major phenotype in all these
disorders.
Very recently, several individuals with variants in

SPATA5 presenting with symptoms of microcephaly, in-
tellectual disability, seizures and hearing loss were re-
ported [4, 5]. All variants in SPATA5 reported to date
are located in important regions with an emphasis on
the CDC48 N-terminal domain, the AAA domains or
the subunit interface (Fig. 2b). Two of the variants re-
ported here (p.Asp608del and p.Gly694Glu) are located
at the subunit interface along with three previously re-
ported variants and our modelling showed an impact on
subunit oligomerization. The other variant reported here
(p.Thr330del) was previously reported in individuals
with a similar phenotype [4].
We conclude that the variants we identified in SPATA5

are causative for the phenotype in the affected individuals.
Our findings suggest that bi-allelic pathogenic variants in
SPATA5 may cause a phenotype with some distinct fea-
tures. All individuals present with intellectual disability and
gross motor delay out of proportion to the degree of intel-
lectual impairment. Other neurological features can be vari-
able. While the affected individual B1 presented with a
profound movement disorder and epileptic encephalopathy
characterized by infantile spasms with hypsarrhythmia,
none of the seven affected individuals in family MR003 had
seizures or dystonia. For many previously reported indi-
viduals movement disorders such as hypotonia, dystonia
or spasticity have been described, as well. Most individuals
have microcephaly, sensorineural hearing loss and cortical
vision impairment. Autistic features were common in ex-
amined individuals. Neuroimaging shows non-specific ab-
normalities such as diffuse or general atrophy or a thin
corpus callosum in some individuals while other individ-
uals have a normal MRI. Many individuals also present
with gastrointestinal issues. We suggest that pathogenic
SPATA5 variants can be identified in individuals with
complex neurodevelopmental phenotypes with obligatory
intellectual disability, particularly in individuals with con-
comitant hearing and vision impairment. Our report ex-
pands the known features of SPATA5 encephalopathy and
suggests that some of the clinical features, such as the
presence or absence of epilepsy, may be mutation specific.

We expect that further cases will add to the delineation of
the SPATA5 phenotype.

Additional file

Additional file 1: Table S1. Comparison of phenotypes of individuals
with mutations in SPATA5. (DOCX 15 kb)
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