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Abstract

Background: One in 4500 children is born with ambiguous genitalia, milder phenotypes occur in one in 300
newborns. Conventional time-consuming hormonal and genetic work-up provides a genetic diagnosis in around
20-40% of 46,XY cases with ambiguous genitalia. All others remain without a definitive diagnosis. The investigation
of milder cases, as suggested by recent reports remains controversial.

Methods: Integrated clinical, hormonal and genetic screening was performed in a sequential series of 46, XY
children, sex-assigned male, who were referred to our pediatric endocrine service for atypical genitalia (2007–2013).

Results: A consecutive cohort of undervirilized 46,XY children with external masculinization score (EMS) 2–12, was
extensively investigated. In four patients, a clinical diagnosis of Kallmann syndrome or Mowat-Wilson syndrome was
made and genetically supported in 2/3 and 1/1 cases respectively. Hormonal data were suggestive of a (dihydro)
testosterone biosynthesis disorder in four cases, however no HSD17B3 or SRD5A2 mutations were found. Array-CGH
revealed a causal structural variation in 2/6 syndromic patients. In addition, three novel NR5A1 mutations were
found in non-syndromic patients. Interestingly, one mutation was present in a fertile male, underlining the
inter- and intrafamilial phenotypic variability of NR5A1-associated phenotypes. No AR, SRY or WT1 mutations were
identified.

Conclusion: Overall, a genetic diagnosis could be established in 19% of non-syndromic and 33% of syndromic
cases. There is no difference in diagnostic yield between patients with more or less pronounced phenotypes, as
expressed by the external masculinisation score (EMS). The clinical utility of array-CGH is high in syndromic cases.
Finally, a sequential gene-by-gene approach is time-consuming, expensive and inefficient. Given the low yield and
high expense of Sanger sequencing, we anticipate that massively parallel sequencing of gene panels and whole
exome sequencing hold promise for genetic diagnosis of 46,XY DSD boys with an undervirilized phenotype.
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Background
The birth of a child with ambiguous genitalia is a rare
event with a prevalence of one in 4500 live births and
poses a challenge to the parents and the medical team [1].
Specialized multidisciplinary medical care, aiming at ad-
dressing concerns and uncertainties with regard to gender
assignment, underlying etiology and management, as well
as providing adequate psychological support is essential
[2]. Extensive and time-consuming hormonal and genetic
work-up provides a genetic diagnosis in 20-40% of cases
[3,4]. Less pronounced atypical development of male ex-
ternal genitalia is more prevalent and is noticed in the
newborn period in around one in 300 males; 75% of cases
are associated with hypospadias [5]. These milder forms of
undervirilization, such as isolated or combined crypt-
orchidism and hypospadias have been related to environ-
mental factors, low birth weight and multiple gene
polymorphisms rather than single gene mutations [6-8].
However, mutations in the Androgen Receptor (AR), Nu-
clear Receptor Subfamily 5 Group A Member 1 (NR5A1)
and Wilms Tumor 1 (WT1) genes - classically associated
with genital ambiguity or more severe forms of underviri-
lization - have recently been identified in cases with iso-
lated proximal or even distal hypospadias, combined
cryptorchidism and (distal) hypospadias or anorchia, and
sequencing of these genes has been advocated in such
cases [9-14]. On the other hand, copy number variations
in genes involved in the process of sexual development
have effectively been detected by whole genome (array
comparative genomic hybridization, array-CGH) or tar-
geted (multiplex ligation-dependent probe amplification,
MLPA) copy number analysis [15-17], and both tech-
niques have become widely available in recent years. How-
ever, whether a systematic extensive genetic work-up is
indicated in the 46,XY newborn with a milder degree of
undervirilization, as indicated by a higher Prader or
External Masculinization Score (EMS) remains a matter
of debate [18]. Current screening methods are time
consuming and have a low efficiency. The introduction
of genome-wide technologies such as whole exome se-
quencing (WES) holds promise for future clinical deci-
sion making in a routine diagnostic setting for these
rare, genetically heterogeneous conditions.
In order to gain insight in the appropriateness and

diagnostic yield of a systematic genetic work-up in 46,
XY infants with atypical external genitalia, we performed
a standardized genetic screening panel in all 46,XY neo-
nates and infants who were referred to our pediatric
endocrine service for atypical male or ambiguous geni-
talia in the period 2007–2013 and who received male
sex assignment. This screening consisted of consecutive
Sanger sequencing of the AR, NR5A1 and WT1 genes,
high-resolution (180 K) array-CGH and a commercially
available MLPA kit with probes for Sex Determining
Region Y (SRY), SRY-box 9 (SOX9), Nuclear Receptor
Subfamily 0 Group B Member 1 (NR0B1), Wingless type
4 (WNT4) and NR5A1. Additionally, sequencing of SRY
was performed in cases with hormonal results consistent
with the presence of (partial) gonadal dysgenesis, and se-
quencing of Hydroxysteroid (17-Beta) Dehydrogenase
(HSD17B3) or Steroid-5-Alpha-Reductase, Alpha Polypep-
tide 2 (SRD5A2) was performed in cases with suspicion of
a (dihydro)testosterone biosynthesis defect. Results were
interpreted in the light of clinical and hormonal findings.

Patients and methods
Patients
All 46,XY children younger than two years who were
referred to our pediatric endocrinology service for the
evaluation of atypical genitalia (e.g. hypospadias, micrope-
nis) and who were sex assigned male, between 2007–2013
were included (n = 32) (Table 1). Medical history included
pregnancy details, birth weight (BW), consanguinity and a
familial history of disorders of sex development (DSD),
sub- or infertility, premature ovarian failure (POF) or atyp-
ical genitalia. Phenotypic description consisted of a phys-
ical examination with special attention to dysmorphism;
EMS scores were calculated based on the aspect of the ex-
ternal genitalia [19]. None of the patients had proteinuria
or renal insufficiency.

Methods
Biochemical analyses
Hormonal levels were obtained between day 14–90 after
birth or after HCG stimulation (Pregnyl®, 1500U, with
blood sampling at baseline and after 72 hours). The fol-
lowing hormone levels were measured: anti-Müllerian
Hormone (AMH) by enzyme linked immunosorbent assay
(Beckman Coulter Company), Androstenedione (A) by
Radioimmunoassay (DiaSource Company), Testosterone
(T) and Dihydrotestosterone (DHT) by liquid chromatog-
raphy/tandem mass spectrometry (UPLC Waters quattro
premier). LH and FSH by electrochemoluminescence
assay (Roche Diagnostics E170 Modular).

Genetic analyses
Array-CGH using the Agilent 180 K array was used as a
genomewide screen for copy number variations (CNVs)
with an overall mean probe spacing of 14 kb, or 11 kb when
only taking into account the Refseq genes. Hybridization
was done according to the manufacturer’s protocol,
followed by visualization of the results in arrayCGHbase
[20]. Fluorescent in situ hybridization (FISH) was per-
formed for SRY to search for SRY rearranging translocations
and mosaicism. To screen for CNVs on the exon level,
MLPA was done using the SALSA MLPA P185 Intersex
probemix (MRC-Holland) containing probes for NR0B1,
NR5A1, SOX9, SRY and WNT4. Sanger sequencing of the



Table 1 Medical history and phenotypic details of patients

Code GA
(weeks)

BW (g) BW
(SD)

EMS Pregnancy Dysmorphic
features

Consanguinity Family history

1 32 900 −3.15 2/12 CS IUGR No Unremarkable

2 41 3.260 −1.12 3/12 Normal Large ears No Unremarkable

Broad nose

Mild frontal
bossing

3 40 4.150 1.12 2,5/
12

Normal / No Maternal aunt: difficulties to get
pregnant, one child with congenital
abnormalities

4 41 3.060 −1.6 3/12 Normal / No Unremarkable

Minoxidil
treatment

5 34 1.320 −2.93 7,5/
12

CS IUGR No Unremarkable

6 40 3.380 −0.59 9/12 Normal / No Grandfather with hypospadias, maternal
aunt with POF

7 30 510 −3.8 6/12 Induced delivery IUGR No Paternal grandmother: cleft lip

Twins

8 39 3.690 0.45 10/
12

IVF / No Unremarkable

9 38 3.310 0.01 8/12 Normal / No Unremarkable

10 39 2.850 −1.53 9/12 Placental infarction Microcephaly No Unremarkable

Mild facial
dysmorphism

11 40 3.000 −1.51 3/12 Normal Macrocephaly No Unremarkable

Facial
dysmorphism

Short neck

Developmental
delay (speech)

12 40 3.850 0.47 6/12 Normal / Yes Mother: fertility problems, irregular
menses

13 35 2.530 −0.26 6/12 Preeclampsia and
hypertension

/ No Unremarkable

Obesity

Twins

Sectio

14 32 945 −2.98 3/12 Bleeding / No Unremarkable

CS

15 40 NA NA 3/12 Normal / No Unremarkable

16 28 860 −1.26 7/12 Eclampsy Atrial septum
defect

No Unremarkable

Prematurity

17 34 1.450 −2.52 6/12 CS Ventricular septum
defect

Yes Cousin (deceased)with Jeune syndrome

18 34 1.400 −2.68 2/12 CS / No Unremarkable

Antidepressant
Paroxetine

19 41 2.805 −2.24 3/12 Normal / No Unremarkable

20 39 2.880 −1.45 6/12 Normal / Possible Unremarkable
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Table 1 Medical history and phenotypic details of patients (Continued)

21 36 1.585 −3.39 7/12 Preeclampsia / No Unremarkable

22 39 2.640 −2.07 6/12 Normal / No Unremarkable

23 40 3.250 −0.9 8/12 Normal / No Unremarkable

24 37 3.290 −0.43 6/12 Normal / Yes Unremarkable

25 38 2.800 −1.20 6/12 Preeclampsia / No Mother: brother deceased from SIDS

Maternal grandfather: depression

Maternal grandmother: recurrent
miscarriage

Father: late puberty

Paternal uncle: retractile testes,
normal fertility

26 39 3.770 −0.63 12/
12

Preterm contractions Hypoplastic bulbus
olfactorius

/ Unremarkable

27 26 700 −1.26 10/
12

IVF Persisting / Unremarkable

Twins

Placental rupture Periventricular
leukcomalacy

28 36 2.570 −0.72 8/12 Previous abortions X-linked ichthyosis / First child was stillborn

Preterm contractions Hypotonia Three miscarriages between
month 1 and 2

Developmental
delay ductus
arteriosus

Bleeding Abnormal liver
function tests

29 39 3.230 −0,6 9/12 Pregnancy after
gonadotrophin
treatment father

/ / Father with Kallmann syndrome,
pregnancy after gonadotrophins

30 38 3.782 1.04 8/12 Normal Mowat-Wilson
syndrome

/ Unremarkable

32 39 2780 −1.70 7/12 Normal No No Unremarkable

GA: gestational age, BW: birth weight, EMS: external masculinization score, IUGR: intra uterine growth retardation, POF: premature ovarian failure, SIDS: sudden
infant death syndrome; CS: Caesarian section, IVF: in vitro fertilization.
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coding exons and untranslated regions (UTRs) was used
to identify mutations in AR, NR5A1 and WT1. SRY se-
quencing was included for patients suspected to have go-
nadal dysgenesis, based on an AMH level below the
reference range. HSD17B3 and SRD5A2 were sequenced
in cases with suspicion of a testosterone biosynthesis dis-
order based on a T/A ratio <1 for 17β-HSD deficiency and
a T/DHT ratio > 8.5 for 5α Reductase Deficiency (Table 2)
[21,22]. Primers for AR, WT1 en SRY were designed using
PrimerXL (http://www.primerxl.org/, available on re-
quest). Primer sequences for NR5A1, HSD17B3 and
SRD5A2 can be found in supplemental data (Additional
file 1: Table S1). Zinc Finger E-Box Binding Homeobox 2
(ZEB2) sequencing and sequencing of the Kallmann syn-
drome (KS) gene panel, consisting of six genes (KAL1,
CHD7, FGFR1, PROK2, PROKR2, FGF8) was done at the
Henri Mondor Hospital (Paris, France). Fibroblast Growth
Factor Receptor 1 (FGFR1) sequencing was performed at
the CHU Hospital Cochin (Paris, France).
Cell culture, RNA extraction and cDNA synthesis
Lymphocytes were isolated by Lymphoprep™ (STEMCELL
Technologies) and cultured in RPMI medium with 10%
FCS; interleukin-2 and phytohemagglutin were added.
Cells were incubated at 37°C and 5% CO2. RNA was ex-
tracted using the RNeasy Plus Mini kit (Qiagen), followed
by cDNA synthesis with the iScript™ cDNA synthesis kit
(Biorad).
Expression analysis
Expression levels of NR5A1 were measured through
real-time quantitative PCR (rt-qPCR), using following
primers: NR5A1-F 5′ caggagtttgtctgcctcaa 3′ and NR
5A1-R 5′ agtggcacagggtgtagtca 3′. After in silico valid-
ation primers were tested using a dilution series. The
experiment was done with the SsoAdvanced SYBR
supermix (Bio-rad). Analysis of rt-qPCR results was
done with qbase + software (Biogazelle).

http://www.primerxl.org/


Table 2 Hormonal and genetic data of patients

Code FSH
(U/l)# (ref)

AMH
(μg/l)
(ref)$

T
(ng/dl)*/**

AR NR5A1 WT1 SRY Array-CGH MLPA Other

1 3.2(1–12) 59.8(46.8-
173)

136* Nl Nl Nl FISH
Nl

Nl Nl HSD17B3

2 14.0(1–12) 62.7(46.8-
173)

63.8*/
579**

/ Nl Nl Nl Nl Nl HSD17B3,
ATRX N

3 6.6(1–12) 10.8(105–
270)

4.7* / c.253_254del / Nl / /

4 1.6(1–12) 118(46.8-
173)

195* Nl Nl Nl / Nl Nl

5 NA 152(67.4-
197)

526** Nl c.437G > C
(tolerated)

/ FISH
Nl

/ /

6 3.3(1–12) 64.5(62–
130)

184* Nl c.630_637del / FISH
Nl

/ Nl

7 1.5(1–12) 57.6(105–
270)

222* Nl Nl Nl / 7q36.3q36.3 (158189154–158343770)×1, maternal Nl

8 NA 10.6(38–
180)

275** Nl Nl Nl Nl Nl Nl

9 NA 231(46.8-
173)

NA Nl Nl Nl / Xp22.33p22.33 (839417–1179089)×3, maternal Nl

10 NA 244(46.8-
173)

NA Nl Nl Nl / Nl Nl ATRX Nl

11 5.5(1–12) NA 158*/511** / / / / 3p25(RP11-385A18→ RP11-334 L22)×3, 9p24.3
(RP11-48 M17→ RP11-320E16)×1

/

12 2.5(1–12) 147(46 ·
8-173)

109* / Nl Nl / / Nl

13 NA 72.7(46.8-
173)

280* / Nl Nl FISH
Nl

Nl Nl

14 1.2(1–12) 8.6(105–
270)

248* Nl / / / / /

15 NA 132.9(42–
185)

NA Nl c.1109 G > A
(p Cys370Tyr)

/ FISH
Nl

16p12.3p12.3 (18894303–19162153)×3,maternal
(normal variant)

/

16 1.3(1–12) 298(67.4-
197)

337* Nl Nl Nl FISH
Nl

Xq13.3q13.3 (74285912–75325119)×2, maternal Nl

17 NA 72(38–
180)

NA / Nl Nl FISH
Nl

/ Nl HSD17B3

18 2.6(1–12) 82.2(23.8-
124)

NA Nl Nl Nl / 2p16.3p16.3 (5073244–50894316)x1;
16p13.11p13.11(15830681–16270149)x3

Nl

19 1.8 49.1(23.8-
124)

35.3*/
390**

Nl Nl Nl FISH
Nl

Xq13.3q13.3(74380482–74567915)×2, maternal Nl

20 2.8(1–12) 194(105–
270)

104* Nl Nl Nl FISH
Nl

Nl Nl

21 1.9(1–12) 28.8(55.3-
187)

NA Nl Nl Nl Nl / Nl

22 2.1(1–12) 94.1(105–
270)

151* Nl Nl Nl Nl 5p14.3p14.3(21438696–21490654)×1, maternal,
14q21.2q21.3(42908541–43293564)×3, maternal

Nl

23 NA 11.27
(55.3-187)

404** Nl Nl Nl Nl Nl Nl

24 NA 43(105–
270)

152*/474** / Nl Nl Nl Nl Nl SRD5A2 N

25 1.0(1–12) 156(105–
270)

207.3* Nl Nl Nl / Nl Nl

26 0.17(1–12) / / / / Nl /
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Table 2 Hormonal and genetic data of patients (Continued)

65.9(105–
270)

3.3*/90.8
**

27 NA 245(55.3-
187)

951** Nl Nl Nl / / Nl

28 NA 14.03
(55.3-187)

NA / / / / Xp22.32p22.31(5405569–9222059)×0, maternal /

29 0.57(1–12) NA 3.2* / / / / / / FGFR1
c.1042G >
A

30 1.2(1–12) 159(105–
270)

502* / / / / Nl / ZEB2
c.2856delG

32 11(1–12) 25(105–
270)

191.9* Nl Nl Nl Nl Nl Nl

Symbols and abbreviations: NA not available, FSH follicle stimulating hormone, AMH anti-Müllerian hormone, ref age-specific reference value, T testosterone,
Nl, normal.
# Determined between day 14–90; $: age-specific AMH reference values may differ according to the commercial kits that have been used during the course of the
study; *Basal testosterone value between day 14–90/**: Testosterone value after HCG stimulation (1500 U, blood sampling after 72 h).
Genomic coordinates based on build hg18 (2006), except for patient 32, where build hg19 (2009) is used.
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The study was approved by the local medical ethical
committee (Registration number B670201110608) and
all parents signed a written informed consent.

Results
Clinical investigation
Consanguinity was present or suspected in 4/32 cases
(12.5%). Another four cases had a family history of subfer-
tility or atypical genitalia. Nine children (28.1%) were born
small for gestational age (SGA), defined as a BW< −2
Standard Deviation (SD) for gestational age, with a mean
BW of −2.8 SD; mean BW of children born appropriate
for GA was −0.36 SD. EMS scores ranged from 2/12 to
12/12. In 6/32 children (18.7 %) dysmorphic features were
noticed. Patient details are represented in Table 1.
Three out of 32 patients (P26, P28, P29) were diagnosed

with KS based on clinical and hormonal data (day 14–90).
Patient 26 (EMS 12) was referred for an atypically looking
short penis (with bilateral descended testes). At physical
examination, stretched penis length (SPL) measured
30 mm, but his penis was extremely thin and weak, remin-
iscent of agenesis of the corpora cavernosa, which was ex-
cluded by Magnetic Resonance Imaging (MRI) of the
penile structures. Hormonal data concordant with hypo-
gonadotropic hypogonadism (HoH) (Table 2) and MRI
revealing a hypoplastic bulbus olfactorius were both con-
sistent with a diagnosis of Kallmann syndrome. An etio-
logical diagnosis was sought by targeted resequencing of
several known KS genes (KAL1, FGFR1, FGF8, CHD7,
PROK2, PROKR2, HS6ST1, WDR11, SEMA3A, GNRH1,
GNRHR, KISS1, KISS1R, TAC3 and TACR3); no causal
mutations were identified. The second patient with KS
(P28, EMS 8) presented with mild craniofacial dysmorph-
ism (ptosis, plagiocephaly), general hypotonia, develop-
mental delay, micropenis (SPL 15 mm) and bilateral
inguinal testes. Low gonadotrophins in association with a
low AMH was suggestive of HoH. Array-CGH revealed a
causal hemizygous deletion on the X chromosome includ-
ing the Kallmann syndrome 1 (KAL1) gene, as discussed
below. Patient 29 (EMS 9) was diagnosed with KS based
on the presence of micropenis (SPL 21 mm) and a positive
family history for KS: the father had been diagnosed with
KS and was able to conceive following gonadotrophin
therapy. Hormonal data confirmed HoH in the index pa-
tient. The diagnosis was supported genetically by the iden-
tification of a heterozygous FGFR1 mutation, c.1042G >A
(p.G348R), in both the patient and his father. This muta-
tion has been described previously [23].
Patient 30 was diagnosed with Mowat-Wilson syn-

drome (MWS), he presented with typical external ear
abnormalities (Figure 1), hypotonia, persistent ductus
arteriosus, ventricular septum defect, facial dysmorph-
ism, Hirschsprung disease, penoscrotal inversion and
hypospadias. MWS is caused by heterozygous de novo mu-
tations in ZEB2. Sequencing of this gene revealed a hetero-
zygous one basepair frameshift deletion, c. 2856delG
(p.Arg953Glufs*24).

Hormonal work-up
With the exception of cases with KS, where FSH was
low, serum FSH was within the reference range in all
cases. AMH, representing Sertoli cell function, was low
in 11/32 cases (34,3%), including 2/3 cases with KS (in
the third KS case, AMH could not be determined) and
4/9 cases (44%) born SGA. Low AMH was associated
with low T values (a marker for Leydig cell function) in
only two cases (P3, subsequently diagnosed with a
NR5A1 mutation and P26, with KS). Two of three pa-
tients with NR5A1 mutations had an AMH value within
the reference for age. Ratios of T/A and T/DHT were
determined to identify possible cases of (dihydro)testos-
terone biosynthesis disorders. The T/A ratio, measured



Figure 1 Mowat-Wilson syndrome, facial characteristics. The
typical large and uplifted earlobes in Patient 30, who was diagnosed
with Mowat-Wilson syndrome based on clinical data.
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during mini-puberty was suggestive of 17β-HSD defi-
ciency in two patients (case 1: T/A ratio 0,19; case 2: T/
A ratio 0,52) and after HCG stimulation in one case
(case 17: T/A ratio 0,08) [21,22]. HSD17B3 sequencing
was performed in all three cases but revealed no causal
mutations. In patient 2 a heterozygous missense variant
was identified, c. 866G > A (p.Gly289Asp), although mu-
tation prediction programs indicated this variant to be
tolerated. In patient 24, a T/DHT ratio of 10,8 was found
at basal sampling during mini-puberty but SRD5A2 se-
quencing revealed no mutations.

Genetic work-up
Array-CGH was done in 23/32 patients to screen for larger
genomic rearrangements. In 10 of them, CNVs were iden-
tified as shown in Table 2. Seven of these rearrangements
were maternally inherited, making their clinical signifi-
cance questionable. In patient 11, we identified a partial
chromosome 9 deletion (9p24.3), encompassing the Dou-
blesex and Mab3 related transcription factor 1 (DMRT1)
gene. In patient 28, a deletion was found on the X chromo-
some (Xp22.31-Xp22.32). This region includes the STS
region and the genes KAL1 and Neuroligin 4, X-linked
(NLGN4X). This deletion was also present in the patient’s
mother. In addition, we performed MLPA for 23/32
patients to screen for deletions and/or duplications on the
exon level, however no additional CNVs were identified.
AR (20/32) and WT1 (22/32) sequencing did not re-

veal any mutations. NR5A1 sequencing was done in 26/
32 patients, leading to the identification of three novel
mutations, which will be discussed below. In cases with
serum AMH below the reference value for age (8/32),
suggestive of gonadal dysgenesis, SRY was sequenced,
however no mutations were found.

Identification of three novel NR5A1 mutations
NR5A1 sequencing revealed three novel mutations
(Figure 2A). In patient 3 a heterozygous frameshift
deletion was identified: c.253_254del, resulting in a
premature stopcodon (p.Ala85*). No other family mem-
bers were available for segregation analysis. A second het-
erozygous frameshift deletion of 8 bp was identified in
patient 6, c.630_637del, (p.Tyr211Profs*12). Rt-qPCR in
the patient’s lymphoblasts indeed showed a lower expres-
sion of NR5A1 mRNA (Figure 2B). Segregation analysis in-
dicated that this mutation was present in (1) the
asymptomatic patient’s mother, (2) maternal aunt, who
had been diagnosed with POF at the age of 35, and (3)
grandfather, who had been operated for proximal hypo-
spadias, but spontaneously fathered two children (pedi-
grees in Figure 2C). The third mutation was found in
patient 15, c.1109 G >A, (p.Cys370Trp). This mutation
was predicted to have a deleterious effect on protein func-
tion according to several prediction programs (SIFT, Poly-
phen and MutationTaster). The affected amino acid is
located in the ligand-binding domain and is highly con-
served (up to zebrafish). Segregation analysis revealed that
the mutation was present in the patient’s mother, who had
no symptoms of POF at the age of 24.

Discussion
To gain insight into the appropriateness and diagnostic
yield of a systematic integrated work-up in 46,XY undervir-
ilized cases who are sex-assigned male, we used a standard-
ized screening panel in a series of 32 cases referred to our
DSD clinic. An overview of the approach is shown in
Figure 3A. Difficulties in blood collection in newborns and
infants made it impossible to perform the complete screen-
ing in every case, resulting in missing data. Low EMS scores
(EMS < 7, n = 17) did not yield a higher diagnostic success
as compared to higher EMS scores (EMS ≥ 7, n = 15). As
reported earlier, no causal genetic variations were identified
in children born SGA (n = 9) in our series [24].

Clinical investigation and hormonal data were sufficient
to diagnose Kallmann syndrome and Mowat-Wilson
syndrome in respectively three and one patients
Familial, hormonal and/or phenotypic data were sufficient
to suspect KS in three patients (P26, 28 and 29) and MWS



Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Three novel NR5A1 mutations. (A) Schematic overview of the positions of the mutations and electropherograms. (B) RT-qPCR showed
a lower NR5A1 expression in the maternal grandfather of the index patient (I:1), and in the mother of the index patient (II:2). We did not include
the index case in this experiment as no fresh blood could be collected. Two negative control samples (NC) without the mutation were included
for comparison. To exclude technical variations, expression of the reference genes GADPH, HMBS and TBP were also measured, showing stable
expression in all patients. (C) Pedigrees for the patients with a NR5A1 mutation. The genotype of the analysed individuals is shown under their
symbol. Full black squares indicate affected males with hypospadias, partially black circles indicate females with POF and circles with a black dot
correspond with asymptomatic carrier females.
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in patient 30. As suggested in a paper by Grumbach et al.
our study confirms that in boys, the period of physio-
logical gonadotrophin surge (the so-called “mini-puberty”)
represents a unique opportunity to diagnose KS early in
cases with a suggestive phenotype (micropenis +/− crypt-
orchidism in the absence of hypospadias) [25]. In these pa-
tients a targeted approach to identify the underlying
molecular cause was used. Here, we ended up with a
higher diagnostic success rate, the molecular cause was
identified in 75% (3/4) of patients.
Figure 3 Overview of the integrated investigation approach. (A) Resu
investigation was sufficient to suspect a diagnosis in 4/32 cases. For two Kallm
shown in the CNV analysis and targeted resequencing boxes. A ZEB2 mutatio
genetic work-up was performed for the remaining patients, guided by hormo
possible testosterone biosynthesis disorder did not reveal mutations. Genetic
gene sequencing led to the identification of two causal CNVs (of which one K
Suggested clinical algorithm for the investigation of 46,XY male neonates or i
investigation, including pregnancy history, medical history and physical exam
features. . Mid-section (blue): In all cases, clinical investigation should be follow
dysgenesis (GD), disorders of the steroid hormone biosynthesis pathway and/
production are implicated here), partial androgen receptor defects or KS. Insig
Lower section (green): After thorough evaluation of clinical and hormonal dat
proceed to clinical whole exome sequencing to identify the underlying molec
brackets (with squared filling) represent single gene tests which can be replac
array-CGH is still a recommended method to identify CNVs.
Despite suggestive hormonal results, we could not
identify any HSD17B3, SRD5A2 or SRY mutations
Accumulation of A or T due to 17β-HSD deficiency or
5α-reductase deficiency respectively may lead to mark-
edly low T/A (in case of 17β-HSD deficiency) or ele-
vated T/DHT (in case of 5α-reductase deficiency) ratios.
In contrast to previous reports, sequencing of the
HSD17B3 and SRD5A2 genes in cases with aberrant T/A
and T/DHT ratios respectively revealed no mutations
[21,22,26,27]. However, for practical reasons, stimulated A
lts in the 46,XY undervirilization cohort. Clinical and hormonal
ann syndrome patients the diagnosis was genetically confirmed, as
n was identified in the Mowat-Wilson syndrome patient. Subsequently a
nal results. Sequencing of HSD17B3 and SRD5A2 in patients with a
screening consisting of array-CGH, DSD MLPA and sequential gene-by-
S, see above) and three novel NR5A1 mutations, respectively. (B)
nfants referred for atypical genitalia. Upper section (orange): clinical
ination, enables categorization in cases with and without syndromic
ed by a hormonal work-up, which in turn can be suggestive of gonadal
or rare forms of CAH (*:Only forms characterized by defective androgen
hts in hormone levels can guide selection of target candidate genes.
a, a decision can be made to sequence specific gene panels or to
ular cause and thereby support the clinical diagnosis. The boxes between
ed be the aforementioned gene panels In cases with syndromic features,
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and T values, which are generally considered more accur-
ate than basal values during mini-puberty, had been ob-
tained in only one of three patients with T/A < 1. Another
possible explanation might be the different detection
methods used for the various androgens (Radioimmuno-
assay for A versus LC/MSMS for T). Simultaneous detec-
tion of A, T and DHT by LC/MSMS, as described recently,
is expected to be more reliable but is not routinely avail-
able yet [28]. Low serum AMH has been reported previ-
ously in infants with KS [3,29], and has been attributed to
a lack of FSH-driven stimulus [30,31].
In all cases in which serum AMH was below the age-

specific reference values (n = 10), sequencing of SRY was
performed but revealed no mutations, confirming that
SRY mutations are a relatively rare cause of 46,XY partial
gonadal dysgenesis in contrast to 46,XY complete go-
nadal dysgenesis, where SRY mutations are thought to
account for up to 15% of cases [3,32].

Genetic screening: targeted resequencing and copy
number analysis
Following a number of recent reports in which NR5A1,
AR and WT1 mutations and CNVs have been identified as
the cause of isolated hypospadias and/or cryptorchidism
[10,12,33-39], a standardized genetic screening protocol
was applied to identify the underlying genetic cause of the
observed atypical genital development in all cases where
clinical and hormonal data did not suggest a specific diag-
nosis, irrespective of the EMS scores. The screening con-
sisted of array-CGH, MLPA and SRY-specific FISH to
screen for genomic rearrangements, and sequencing of
the AR, WT1 and NR5A1 genes.

Array-CGH is a valuable diagnostic tool in 46,XY
undervirilization newborns with dysmorphic features and
allowed the identification of two causal CNVs in our cohort
Array-CGH was used to screen for larger genomic rear-
rangements and led to the identification of two deletions
with clinical significance, both found in syndromic pa-
tients. Patient 11 (EMS = 3) presented with penoscrotal
hypospadias and transposition. Besides these genital
characteristics, this patient also showed macrocephaly,
facial dysmorphism and developmental delay. Hormonal
results revealed normal T levels, AMH was not available;
array-CGH revealed a partial chromosome 9 deletion,
encompassing the DMRT gene cluster. These genes en-
code transcriptional regulators involved in sex develop-
ment, and monosomy of the distal part of chromosome
9p, mostly DMRT1, has been associated with 46,XY
DSD in several cases [40,41]. Patient 28 (EMS = 8)
showed symptoms of KS. Other phenotypic characteris-
tics included: X-linked ichthyosis, hypotonia, recurrent
kidney stones and developmental delay. Liver function
tests showed abnormal results, of hitherto unknown
etiology. In this patient a part of the X-chromosome, in-
cluding the genes KAL1 and NLGN4X, was deleted. KAL1
deletions or mutations are an established cause of X-
linked KS and can explain the genital phenotype seen in
this patient [42]. NLGN4X, has been associated with X-
linked mental retardation and X-linked autism spectrum
disorders [43], and might explain the observed develop-
mental delay. Previously, a link between KS, ichthyosis
and Xp deletions has been described by Bick et al. [44].
No evident association could be found between the identi-
fied deletion and the elevated liver enzymes and recurrent
kidney stones. This deletion was inherited from the
mother, who had mild mental delay but no symptoms of
KS. This deletion is therefore characterized by incomplete
penetrance.
In total, array-CGH revealed 10 CNVs in 22 patients,

seven of them were inherited from the mother; making
their clinical relevance questionable. Array-CGH resulted
in a definite genetic diagnosis in 2/22 patients, (9%). When
only considering the syndromic cases, arrayCGH renders
a diagnostic yield of 2/6 patients (33%). Although our
series is small we can conclude that array-CGH is a valu-
able diagnostic tool in 46,XY DSD with associated dys-
morphic features however larger patient groups should be
investigated to make more definite conclusions. Because
of the limited resolution of array-CGH, we performed
MLPA to screen for deletions or duplications on the exon
level for SOX9, NR5A1, WNT4 and NR0B1. In total 23 pa-
tients were screened, however no additional CNVs were
identified. Likewise, FISH analysis of SRY could not reveal
any deletions. Although the mutation uptake of targeted
CNV detection (MLPA) was limited in our cohort, it still
remains an important addition to a genetic work-up of 46,
XY undervirilized or 46,XY DSD patients. Different re-
ports showed NR5A1 microdeletions as a cause of both
46,XY DSD and POF [16,45]

We identified three novel NR5A1 mutations, one of them
was present in an affected male with preserved fertility
Recently Kohler et al. reported a WT1 mutation rate of
7.5% in children with severe hypospadias and Wang
et al. identified AR mutations in 6.6% of their patient co-
hort with isolated hypospadias and micropenis, indicat-
ing a role for both WT1 and AR in minor forms of
undervirilization [4,34]. Sanger sequencing of AR and
WT1 was done in respectively 20 and 22 patients of our
cohort. In contrast to these series, no significant se-
quence changes in these genes were identified. The rela-
tively high frequency in previous cohorts might be
attributed to a selection bias. Therefore, we conclude
that the incidence of mutations in AR and WT1 muta-
tions is probably overestimated in patients with milder
forms of undervirilization. On the other hand, NR5A1
was sequenced in 26 patients and revealed mutations in
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three of them (11.5%). This is in line with other series,
where mutations were identified in approximately 15%
of patients. In our cohort, two frameshift mutations and
one missense mutation were identified. The missense
mutation, c.1109G > A, found in patient 15 (EMS = 3),
targets an amino acid in the functionally important lig-
and binding domain (p.Cys370Trp) and is predicted to
alter protein function (SIFT, Polyphen, MutationTaster).
This mutation was also found in the patient’s mother. In
addition to causing 46,XY DSD, NR5A1 mutations are a
known cause of premature ovarian failure (POF) [46].
The patient’s mother had regular menses at the age of
30, however she is at risk for developing POF. The first
frameshift mutation (patient 3), c.253_254del induces a
premature stop codon at position 85 (p.Ala85*). There
were no additional family members available for segrega-
tion analysis. The second frameshift mutation (patient
6), c. 630_637del, also leads to a premature stop codon
(p. Tyr211Profs12*). This mutation was also present in
the mother of the patient, a maternal aunt and the ma-
ternal grandfather. The aunt had recently been diag-
nosed with POF at the age of 35 years and underwent
several in vitro fertilization (IVF) cycles, the patient’s
mother (age 39) declared to have regular menses. Inter-
estingly, the grandfather had been treated for hypospa-
dias as a child. Preserved fertility in males with NR5A1
mutations has only exceptionally been reported so far
[47,48]. These findings support the extreme intra-
familial variability seen with NR5A1 mutations. At the
moment the mechanism behind this phenotypic variabil-
ity and incomplete penetrance resulting from NR5A1
mutations remains elusive; they likely result from the ef-
fects of multiple genetic variations (modifiers) and/or
their interactions with environmental factors. Variable
expressivity, reduced penetrance and even more com-
plex inheritance patterns such as digenic models have
been reported in other developmental conditions such
as Kallmann syndrome and may be explained in part by
the overall ‘mutational load’ in different genes playing a
role in common signaling pathways [49-51].
The integrated story: clinical, hormonal and genetic data
Taken together, in spite of extensive clinical, hormonal
and genetic screening, the molecular cause of 46,XY
atypical male genital development could only be identi-
fied in seven out of 32 patients (21.8%). When compar-
ing the diagnostic success rate between patients with
low (<7, n = 17) or high (≥7, n = 15) EMS scores, we
identified the underlying molecular defect in respectively
three and four patients, leading to a diagnostic success
rate of respectively 17.6% and 26.5% for patients with
low versus higher EMS scores, suggesting that the deci-
sion to perform a detailed diagnostic work-up in 46,XY
patients with atypical genitalia should not be based on
the severity of the phenotype alone. Array-CGH revealed
the causal CNV in two out of six syndromic patients,
leading to a diagnostic yield of 33% in patients with add-
itional phenotypic characteristics. When we included
non-syndromic cases, the success rate drops to 9%, indi-
cating that array-CGH is still an appropriate diagnostic
tool in syndromic forms of 46,XY DSD, but is less effi-
cient in non-syndromic cases. Sequencing of AR, WT1
and SRY did not reveal any mutations. Besides the low
diagnostic yield of this sequential sequencing approach,
cost and time efficiency should be considered. Sanger se-
quencing has an average cost of $2400 per million bases,
whereas the emerging next generation sequencing tech-
nologies (NGS) are much cheaper. With the Illumina
platform, there is only a $0.07 sequencing cost per mil-
lion bases (number based on Hiseq2000) [52]. The next
step in the diagnostic work-up of 46,XY boys wit atypical
genitalia should be the implementation of targeted NGS
panels covering clinically relevant genes with a known
role in sex development and steroid biosynthesis path-
ways. A flexible and automated NGS workflow used for
targeted resequencing of disease gene panels has been
reported by us and allows parallel and cost-effective ana-
lysis of a sizeable number of genes in a clinical setting
(De Leeneer et al. Human Mutation provisionally ac-
cepted). While this approach seems to be very useful in
some heterogeneous disorders, their clinical utility in 46,
XY DSD is debatable, since the known disease genes in
these phenotypes only account for 20–40% of patients.
Therefore we anticipate that whole exome sequencing
(WES), which is increasingly put forward as a clinical
diagnostic test in genetically heterogeneous disorders
[53,54], will gain importance in the diagnostic work-up
of 46,XY DSD, both in a clinical and research context.
However, in cases where associated phenotypic charac-
teristics or cases where clinical and hormonal data sug-
gest a specific gene defect, it remains advisable to
perform targeted resequencing of the specific disease
gene(s).
Conclusion
In this study we examined a large consecutive cohort of
undervirilized 46,XY neonates and infants. Following
this protocol we were able to genetically diagnose 19%
of non-syndromic patients and one third of the syn-
dromic cases. There was no significant difference be-
tween the diagnostic success rate in patients with low
EMS compared to higher EMS. In syndromic cases,
array-CGH had a high diagnostic yield. Serial gene
screening resulted in several novel NR5A1 mutations, al-
though the overall diagnostic yield was rather low. Inter-
estingly, we identified a novel NR5A1 mutation that was
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also present in a related male with preserved fertility,
which has only exceptionally been reported. Given the
low diagnostic yield of the sequential approach, parallel
screening technologies such as targeted resequencing of
clinically relevant disease genes and WES will be a pre-
ferred choice in future screening protocols. However, in
cases where associated phenotypes are present, a more
targeted approach remains the preferential strategy.
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