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Abstract

Background: Inherited retinal disorders are clinically and genetically heterogeneous with more than 150 gene
defects accounting for the diversity of disease phenotypes. So far, mutation detection was mainly performed by
APEX technology and direct Sanger sequencing of known genes. However, these methods are time consuming,
expensive and unable to provide a result if the patient carries a new gene mutation. In addition, multiplicity of
phenotypes associated with the same gene defect may be overlooked.

Methods: To overcome these challenges, we designed an exon sequencing array to target 254 known and
candidate genes using Agilent capture. Subsequently, 20 DNA samples from 17 different families, including four
patients with known mutations were sequenced using Illumina Genome Analyzer IIx next-generation-sequencing
(NGS) platform. Different filtering approaches were applied to identify the genetic defect. The most likely disease
causing variants were analyzed by Sanger sequencing. Co-segregation and sequencing analysis of control samples
validated the pathogenicity of the observed variants.

Results: The phenotype of the patients included retinitis pigmentosa, congenital stationary night blindness, Best
disease, early-onset cone dystrophy and Stargardt disease. In three of four control samples with known genotypes
NGS detected the expected mutations. Three known and five novel mutations were identified in NR2E3, PRPF3, EYS,
PRPF8, CRB1, TRPM1 and CACNA1F. One of the control samples with a known genotype belongs to a family with
two clinical phenotypes (Best and CSNB), where a novel mutation was identified for CSNB. In six families the
disease associated mutations were not found, indicating that novel gene defects remain to be identified.

Conclusions: In summary, this unbiased and time-efficient NGS approach allowed mutation detection in 75% of
control cases and in 57% of test cases. Furthermore, it has the possibility of associating known gene defects with
novel phenotypes and mode of inheritance.
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Background
Inherited retinal disorders affect approximately 1 in 2000
individuals worldwide [1]. Symptoms and associated phe-
notypes are variable. In some groups the disease can be
mild and stationary such as in congenital stationary night
blindness (CSNB) or achromatopsia (ACHM), whereas
other disorders are progressive leading to severe visual

impairment such as in rod-cone dystrophies, also known as
retinitis pigmentosa (RP) or cone and cone-rod dystro-
phies. The heterogeneity of these diseases is reflected in the
number of underlying gene defects. To date more than 150
genes have been implicated in different forms of retinal dis-
orders http://www.sph.uth.tmc.edu/Retnet/home.htm and
yet in a significant proportion of patients the disease caus-
ing mutation could not be identified, suggesting additional
novel genes that remain to be discovered. Furthermore,
recent studies have outlined that distinct phenotypes can

* Correspondence: isabelle.audo@inserm.fr; christina.zeitz@inserm.fr
1INSERM, U968, Paris, F-75012, France
Full list of author information is available at the end of the article

Audo et al. Orphanet Journal of Rare Diseases 2012, 7:8
http://www.ojrd.com/content/7/1/8

© 2012 Audo et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.sph.uth.tmc.edu/Retnet/home.htm
mailto:isabelle.audo@inserm.fr
mailto:christina.zeitz@inserm.fr
http://creativecommons.org/licenses/by/2.0


be related to the dysfunction of the same gene [2-4].
Furthermore, there may be additional phenotype-genotype
associations that are still not recognized. The state-of-the-
art phenotypic characterization including precise family
history and functional as well as structural assessment (i.e.
routine ophthalmic examination, perimetry, color vision,
full field and multifocal electroretinography (ERG), fundus
autofluorescence (FAF) imaging and optical coherence
tomography (OCT)) allows targeted mutation analysis for
some disorders. However, in most cases of inherited retinal
diseases, similar phenotypic features can be due to a large
number of different gene defects.
Various methods can be used for the identification of

the corresponding genetic defect. All these methods have
advantages and disadvantages. Sanger sequencing is still
the gold-standard in determining the gene defect, but due
to the heterogeneity of the disorders it is time consuming
and expensive to screen all known genes. Mutation detec-
tion by commercially available APEX genotyping microar-
rays (ASPER Ophthalmics, Estonia) [5,6] allows the
detection of only known mutations. In addition, a separate
microarray has been designed for each inheritance pattern,
which tends to escalate the costs especially in simplex
cases, for which inheritance pattern cannot be predeter-
mined. Indirect methods with single nucleotide poly-
morphism (SNP) microarrays for linkage and
homozygosity mapping are also powerful tools, which has
proven its reliability in identifying novel and known gene
defects [7-12]. However, in case of homozygosity mapping
the method can only be applied to consanguineous
families or inbred populations. To overcome these chal-
lenges, we designed a custom sequencing array in colla-
boration with a company (IntegraGen, Evry, France) to
target all exons and part of flanking sequences for 254
known and candidate retinal genes. This array was subse-
quently applied through NGS to a cohort of 20 patients
from 17 families with different inheritance pattern and
clinical diagnosis including RP, CSNB, Best disease, early-
onset cone dystrophy and Stargardt disease.

Methods
Clinical investigation
The study protocol adhered to the tenets of the Declara-
tion of Helsinki and was approved by the local Ethics
Committee (CPP, Ile de France V). Informed written
consent was obtained from each study participant. Index
patients underwent full ophthalmic examination as
described before [13]. Whenever available, blood sam-
ples from affected and unaffected family members were
collected for co-segregation analysis.

Previous molecular genetic analysis
Total genomic DNA was extracted from peripheral blood
leucocytes according to manufacturer’s recommendations

(Qiagen, Courtaboeuf, France). DNA samples from some
patients with a diagnosis of RP were first analyzed and
excluded for known mutations by applying commercially
available microarray analysis (arRP and adRP ASPER
Ophthalmics, Tartu, Estonia). In some cases, pathogenic
variants in EYS, C2orf71, RHO, PRPF31, PRPH2 and RP1
were excluded by direct Sanger sequencing of the coding
exonic and flanking intronic regions of the respective
genes [13-17]. Conditions used to amplify PRPH2 can be
provided on request.

Molecular genetic analysis using NGS
A custom-made SureSelect oligonucleotide probe library
was designed to capture the exons of 254 genes for dif-
ferent retinal disorders and candidate genes according
to Agilent’s recommendations (Table 1). These genes
include 177 known genes underlying retinal dysfunction
(http://www.sph.uth.tmc.edu/retnet/sum-dis.htm, Octo-
ber 2010, Table 1) and 77 candidate genes associated
with existing animal models and expression data (Table
2). The eArray web-based probe design tool was used
for this purpose https://earray.chem.agilent.com/earray.
The following parameters were chosen for probe design:
120 bp length, 3× probe-tiling frequency, 20 bp overlap
in restricted regions, which were identified by the imple-
mentation of eArray’s RepeatMasker program. A total of
27,430 probes, covering 1177 Mb, were designed and
synthesized by Agilent Technologies (Santa Clara, CA,
USA). Sequence capture, enrichment, and elution were
performed according to the manufacturer’s instructions
(SureSelect, Agilent). Briefly, three μg of each genomic
DNA were fragmented by sonication and purified to
yield fragments of 150-200 bps. Paired-end adaptor oli-
gonucleotides from Illumina were ligated on repaired
DNA fragments, which were then purified and enriched
by six PCR cycles. 500 ng of the purified libraries were
hybridized to the SureSelect oligo probe capture library
for 24 h. After hybridization, washing, and elution, the
eluted fraction underwent 14 cycles of PCR-amplifica-
tion. This was followed by purification and quantifica-
tion by qPCR to obtain sufficient DNA template for
downstream applications. Each eluted-enriched DNA
sample was then sequenced on an Illumina GAIIx as
paired-end 75 bp reads. Image analysis and base calling
was performed using Illumina Real Time Analysis
(RTA) Pipeline version 1.10 with default parameters.
Sequence reads were aligned to the reference human
genome (UCSC hg19) using commercially available soft-
ware (CASAVA1.7, Illumina) and the ELANDv2 align-
ment algorithm. Sequence variation annotation was
performed using the IntegraGen in-house pipeline,
which consisted of gene annotation (RefSeq), detection
of known polymorphisms (dbSNP 131, 1000 Genome)
followed by mutation characterization (exonic, intronic,
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Table 1 Known retinal disease genes

Number Gene name

1 ABCA4

2 ABCC6

3 ADAM9

4 AHI1

5 AIPL1

6 ALMS1

7 ARL6

8 ARMS2

9 ATXN7

10 BBS10

11 BBS12

12 BBS2

13 BBS4

14 BBS5

15 BBS7

16 BBS9

17 BEST1

18 C1QTNF5

19 C2

20 C2orf71

21 C3

22 CA4

23 CABP4

24 CACNA1F

25 CACNA2D4

26 CC2D2A

27 CDH23

28 CDH3

29 CEP290

30 CERKL

31 CFB

32 CFH

33 CHM

34 CLN3

35 CLRN1

36 CNGA1

37 CNGA3

38 CNGB1

39 CNGB3

40 CNNM4

41 COL11A1

42 COL2A1

43 COL9A1

44 CRB1

45 CRX

46 CYP4V2

47 DFNB31

Table 1 Known retinal disease genes (Continued)

48 DMD

49 DPP3

50 EFEMP1

51 ELOVL4

52 ERCC6

53 EYS

54 FAM161A

55 FBLN5

56 FSCN2

57 FZD4

58 GNAT1

59 GNAT2

60 GPR98

61 GRK1

62 GRM6

63 GUCA1A

64 GUCA1B

65 GUCY2D

66 HMCN1

67 HTRA1

68 IDH3B

69 IMPDH1

70 IMPG2

71 INPP5E

72 INVS

73 IQCB1

74 JAG1

75 KCNJ13

76 KCNV2

77 KLHL7

78 LCA5

79 LRAT

80 LRP5

81 MERTK

82 MFRP

83 MKKS

84 MKS1

85 MTND1

86 MTND6

87 MT-AP6

88 MTND2

89 MTND5

90 MTND4

91 MYO7A

92 NDP

93 NPHP1

94 NPHP3

95 NPHP4
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silent, nonsense etc.). For each position, the exomic fre-
quencies (homozygous and heterozygous) were deter-
mined from all the exomes already sequenced by
IntegraGen and the exome results provided by HapMap
project.

Investigation of annotated sequencing data
We received the annotated sequencing data in the form
of excel tables. On average 946 SNPs and 83 insertions
and deletions were identified for each sample (Figure 1).
By using the filtering system, we first investigated var-
iants (nonsense and missense mutations, intronic

Table 1 Known retinal disease genes (Continued)

96 NR2E3

97 NRL

98 NYX

99 OAT

100 OFD1

101 OPA1

102 OPA3

103 OPN1LW

104 OPN1MW

105 OPN1Sw

106 OTX2

107 PANK2

108 PAX2

109 PCDH15

110 PCDH21

111 PDE6A

112 PDE6B

113 PDE6C

114 PDE6G

115 PDZD7

116 PEX1

117 PEX2

118 PEX7

119 PGK1

120 PHYH

121 PITPNM3

122 PRCD

123 PROM1

124 PRPF3

125 PRPF31

126 PRPF8

127 PRPH2

128 RAX2

129 RB1

130 RBP3

131 RBP4

132 RD3

133 RDH12

134 RDH5

135 RGR

136 RGS9

137 RGS9BP

138 RHO

139 RIMS1

140 RLBP1

141 ROM1

142 RP1

Table 1 Known retinal disease genes (Continued)

143 RP1L1

144 RP2

145 RP9

146 RPE65

147 RPGR

148 RPGRIP1

149 RPGRIP1L

150 RS1

151 SAG

152 SDCCAG8

153 SEMA4A

154 SLC24A1

155 SNRNP200

156 SPATA7

157 TEAD1

158 TIMM8A

159 TIMP3

160 TLR3

161 TLR4

162 TMEM126A

163 TOPORS

164 TREX1

165 TRIM32

166 TRPM1

167 TSPAN12

168 TTC8

169 TTPA

170 TULP1

171 UNC119

172 USH1C

173 USH1G

174 USH2A

175 VCAN

176 WFS1

177 ZNF513
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Table 2 Candidate genes for retinal disorders

Number Gene name Reason References

1 ADCY1 diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

2 ANKRD33 diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

3 ANXA2 Promotion of choroidal neovascularization [36]

4 ARL13B Cilia protein, mutations lead to Joubert Syndrome [37]

5 BMP7 Regulation of Pax 2 in mouse retina [38]

6 BSG - Thierry Leveillard personal commmunication

7 CAMK2D diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

8 CCDC28B Modifier for BBS [39,40]

9 CLCN7 Cln7-/- mice severe osteopetrosis and retinal degeneration [41]

10 COL4A3 Alport syndrome, with eye abnormalities [42,43]

11 COL4A4 Alport syndrome, with eye abnormalities [42,44]

12 COL4A5 Alport syndrome, with eye abnormalities [42,45]

13 CUBN - Personal communication Renata Kozyraki

14 CYP1B1 glaucoma [46]

15 DOHH diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

16 DSCAML1 diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

17 ESRRB diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

18 FIZ1 Interactor of NRL [47]

19 GJA9 diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

20 GNAZ diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

21 GNGT1 diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

22 GPR152 diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

23 HCN1 diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

24 HEATR5A diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

25 HIST1H1C Expressed in retina Expression databases

26 IMPG1 diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

27 INSL5 diff. Expression rd1 mouse Chalmel et al., manuscript in preparatiom

28 KCNB1 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

29 KCTD7 Expressed in retina Expression databases

30 LASS4 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

31 LRIT2 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom Rd1 mouse

32 LRP2 - Personal communication Renata Kozyraki

33 MAB21L1 diff. expression Rd1 mouse Chalmel et al., manuscript in preparatiom

34 MAP2 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

35 MAS1 Degeneration of cones due to expression of Mas1 [48]

36 MAST2 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

37 MPP4 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

38 MYOC glaucoma [49]

39 NDUFA12 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

40 NEUROD1 BETA2/NeuroD1 -/- mouse: photoreceptor degeneration [50]

41 NOS2 glaucoma [51]

42 NXNL1 Rod-derived cone viability factor [52]

43 NXNL2 Rod-derived cone viability factor 2 [53]

44 OPN1MW2 Cone opsin, medium-wave-sensitive2 [54]

45 OPTN glaucoma [55]

46 PFKFB2 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

47 PIAS3 Rod photoreceptor development [56]
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variants located +/- 5 apart from exon), which were
absent in dbSNP and NCBI databases http://ncbi.nlm.
nih.gov/. In the absence of known gene defects or puta-
tive pathogenic variants (see below) in the first step, we
selected known genes, which were previously clinically
associated including variants present in dbSNP and
NCBI databases (Figure 1). Each predicted pathogenic
variant was confirmed by Sanger sequencing.

Assessment of the pathogenicity of variants
Following criteria were applied to evaluate the patho-
genic nature of novel variations identified by NGS: 1)
stop/frameshift variants were considered as most likely
to be disease causing; 2) co-segregation in the family; 3)
absence in control samples; 4) for missense mutations
amino acid conservation was studied in the UCSC Gen-
ome Browser http://genome.ucsc.edu/ across species
from all different evolutionary branches. If the amino

acid residue did not change it was considered as “highly
conserved”. If a different change was seen in fewer than
five species and not in the primates then it was consid-
ered as “moderately conserved” and if a change was pre-
sent in 5-7, it was considered as “weakly conserved”,
otherwise the amino acid residue was considered as “not
conserved”, 5) pathogenicity predictions with bioinfor-
matic tools (Polyphen: Polymorphism Phenotyping,
http://genetics.bwh.harvard.edu/pph/ and SIFT: Sorting
Intolerant From Tolerant, http://blocks.fhcrc.org/sift/
SIFT.html) if at least one of the program predicted the
variant to be possibly damaging, it was considered to be
pathogenic; 6) presence of the second mutant allele in
the case of autosomal recessive inheritance. Mutations
were described according to the HGVS website http://
www.hgvs.org/mutnomen. In accordance with this
nomenclature, nucleotide numbering reflects cDNA
numbering with +1 corresponding to the A of the ATG

Table 2 Candidate genes for retinal disorders (Continued)

48 PKD2L1 Diff. expression in human retinal detachment Delyfer et al. 2011 submitted

49 PLEKHA1 Age-related macular degeneratiom [57]

50 PPEF2 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

51 RAB8A Interacts with RPGR, role in cilia biogenesis and maintenance [58]

52 RABGEF1 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

53 RCVRN diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

54 RGS20 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

55 RNF144B diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

56 RORB Rod photoreceptor development in mice [59]

57 RXRG Retinoic acid receptor, highly expressed in the eye Expression databases

58 SGIP1 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

59 SLC16A8 Altered visual function in ko-mice [60]

60 SLC17A7 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

61 STAM2 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

62 STK35 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

63 STX3 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

64 SV2B diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

65 TBC1D24 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

66 THRB Essential for M-cone development in rodents [61]

67 TMEM216 Cilia protein, mutations lead to Joubert and Meckel syndrome [62]

68 TMEM67 Cilia protein, mutations lead to Joubert [63]

69 TRPC1 diff. expression rd1 mouse diff. expression Rd1 mouse

70 UHMK1 diff. expression rd1 mouse diff. expression Rd1 mouse

71 VSX1 Stimulator for promoter NXNL1 [64]

72 VSX2 Stimulator for promoter NXNL1 [64]

73 WDR17 diff. expression rd1 mouse diff. expression Rd1 mouse

74 WDR31 diff. expression Nxnl1-/- mouse [65]

75 WISP1 diff. expression rd1 mouse Chalmel et al., manuscript in preparatiom

76 XIAP Protects photoreceptors in animal models of RP [66]

77 ZDHHC2 diff. expression Rd1 mouse Chalmel et al., manuscript in preparatiom
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translation initiation codon in the reference sequence.
The initiation codon is codon 1. The correct nomencla-
ture for mutation was checked applying Mutalyzer
http://www.lovd.nl/mutalyzer/.

Results
The overall sequencing coverage of the captured regions
was 98.4% and 90.4% for a 1× and a 10× coverage respec-
tively. The overall sequencing depth was > 120×. The
number of reference and variant sequences detected by
NGS, reflected the correct zygosity state of the variant;
on average if 50% of the sequences represented the var-
iant, then a heterozygous state was called, while if 100%
of the sequences represented the variant, then a homozy-
gous or hemizygous state was annotated by IntegraGen.

Validation of the novel genetic testing tool for retinal
disorders
To validate the novel genetic testing tool for retinal dis-
orders, we used four DNA samples from families, in
which we had previously identified different types of
mutations by Sanger sequencing: one 1 bp duplication
and one 1 bp deletion in PRPF31 and missense muta-
tions in TRPM1 and BEST1 (Table 3). Three of the four
mutations were detectable by NGS, whereas the deletion
in PRPF31 was not identified. To validate if this was due
to a technical problem of deletion detection in general
or low coverage at this position, the sequencing depth
was investigated in detail. Indeed the coverage at this
position reflected by the mean depth was only ~1-6 for
all samples. This indicates that although the coverage in

•
•

•
•

•
•

•
•

•
•

•

•
•

•

Figure 1 Flow chart of variant analysis. IntegraGen provided the results in form of excel tables. For each sample on average 946 SNPs and 83
inDels were detected, of which 11 represent missense, nonsense or putative splice site mutations, which were absent in dbSNB, NCBI and 1000
genome databases. Of those 1-5 variants were predicted to be pathogenic. In case where none of the variants were predicted to be pathogenic,
dbSNB, NCBI and 1000 genome databases were included to detect mutations referenced with an rs-number. Co-segregation analysis was
performed in families with putative pathogenic variants.
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general was very good, specific probes used here need to
be redesigned to improve the capture for specific exons.

Detection of known and novel mutations
Some of the patients from the 14 families with no
known gene defect were previously excluded for known
mutations using microarray analysis and by Sanger
sequencing in the known genes EYS, C2orf71, RHO,
PRPF31, PRPH2 and RP1. Other samples were never
genetically investigated. In four DNA samples known
mutations were detected (Table 4) from three different
families with autosomal dominant (ad) or recessive (ar)
RP. All mutations co-segregated with the phenotype
(Figure 2). In seven samples, novel mutations in known
genes were identified. These mutations co-segregated
with the phenotype from five different families with
adCSNB, x-linked incomplete CSNB, adRP, arRP and x-
linked RP (Table 5, Figures 3 and 4). One of the cases
from these five families was also used as a control for
Best disease carrying a known BEST1 mutation (Table
3). In addition to the Best phenotype, ERG-responses of
this patient resembled those of complete CSNB, i.e.
showing selective ON-bipolar pathway dysfunction. This
phenotype was independent of the Best phenotype (Fig-
ure 3). The most likely disease causing mutation

detected by NGS was a novel heterozygous TRPM1
mutation (Table 4, Figure 3).

Unsolved cases
In six of the 14 families with Stargardt disease, adRP,
adCD with postreceptoral defects, arRP, early onset
arCD with macrocephaly and mental retardation
described in affected sister and x-linked cCSNB, the dis-
ease associated mutations remain to be elucidated or
validated (Table 6, Figure 5).

Discussion
By using NGS in 254 known and candidate genes we
were able to detect known and novel mutations in 57%
of families tested. In order to achieve this goal, we
applied a rigorous protocol (Figure 1). To our knowl-
edge, this is the first report using NGS to investigate all
inherited retinal disorders at once. In a study restricted
to adRP, Bowne and co-workers used a similar approach
including 46 known and candidate genes for adRP [18].
All their cases had previously been screened and
excluded for most of the known genes underlying adRP.
The authors were able to identify known or novel muta-
tions in five out of 21 cases in genes not included in a
pre-screening [18]. This added five patients to their

Table 3 Patients with known mutations used to validate the novel genetic approach for retinal disorders

Index Phenotype Gene Mutation Allele
State

Read reference
NGS

Read variant
NGS

Mutation detected by
NGS

Mean
depth

CIC00034,
F28

adRP PRPF31 c.666dup
p.
I223YfsX56

het 11 13 yes 21.3-22.5

CIC00140,
F108

adRP PRPF31 c.997delG
p.
E333SfsX5

het - - no 5.0-5.2

CIC00238,
F165

arCSNB TRPM1 c.1418G >
C
p.R473P

homo 0 38 yes 36.7

CIC00707,
F470

Best and adCSNB see
Table 5

BEST1 c.73C > T
p.R25W

het 40 38 yes 99.4

Table 4 Detection of known mutations by using the novel genetic approach for retinal disorders

Index Phenotype Pre-screening Gene Mutation Allele
State

Read
reference
NGS

Read
variant
NGS

Reference Mutation verified by
Sanger and co-
segregation

CIC00019,
F16

adRP Linkage, RHO,
PRPF31, PRPH2,
RP1

PRPF3 c.1481C > T
p.T494M

het 25 22 [67] yes

CIC0000893,
F574

adRP RHO, PRPF31,
PRPH2, RP1

NR2E3 c.166G > A
p.G56R

het 5 3 [68] yes

CIC000128,
F100

arRP,
consang.

- EYS c.408_423del
p.N137VfsX24

homo - 179 [13,69] yes

CIC0000943,
F100

arRP,
consang

- EYS c.408_423del p.
N137VfsX24

homo 0 193 [13,69] yes
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adRP cohort with known gene defects, indicating that
64% of their patients show known mutations with new
genes still to be discovered in the remaining 36%. The
current study provides a more exhaustive tool, since it
incorporates screening of 254 genes implicated in var-
ious retinal disorders of different inheritance patterns
and additional candidate genes for these phenotypes.
With this approach a cohort of both pre-screened and
unscreened samples, was investigated. The mutation
detection rate of 57% is high and was never obtained
before by high throughput screening methods. Further-
more, this approach is probably less time consuming
and expensive than existing methods such as direct
sequencing of all known genes or microarray analysis.
Of note however is one of the variants detected with the
NGS approach (i.e. p.V973L exchange in GUCY2D),

which was not confirmed by direct Sanger sequencing,
suggesting the possibility of false positive using the high
throughput screening. Verification by direct Sanger
sequencing of most likely pathogenic variants is there-
fore essential to validate NGS data, although the false
positive rate is assumed to be low (in our study 1/28
verified sequence variants represented a false positive).
Overall, the study of 20 subjects from 17 families by

NGS showed that most of the targeted regions are well
covered (more than 98%). However, some of the regions
showed a lower coverage (GC-rich regions) or were not
captured (repetitive regions). This was for instance the
case for two genes underlying cCSNB, (i.e. NYX and
GRM6) and the repetitive region of ORF15 of RPGR.
For GC-rich regions the capture design could be
improved in the future by modifying NGS chemistry, as

Fam 16: PRPF3: M: c.1481C>T p.T494M

? ?

352

19 3266

3113

909 984

3361

983 1259 1248 1119 1023 911 913 1167 1166 1036 1037 1143 1421

843 3239

1250 3455 1120 3240 910 1165 3263

932 982 1145 1069 3251

108437801073142311421035

[=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=]

[=]+[=][=]+[=][=]+[=][=]+[=]

[=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=] [=]+[=]

[M]+[=] [M]+[=] [M]+[=] [M]+[=] [M]+[=]

[M]+[=][M]+[=][M]+[=]

[M]+[=][M]+[=]

Fam 100: EYS: M: c.408_423del16 p.N137VfsX24

128
[M]+[M]

203
[M]+[M]

3744
[M]+[M]

181
[M]+[M]

943
[M]+[M]

[M]+[=]

Fam 574: NR2E3: M: c.166G>A p.G56R

[M]+
[=]

893 2501
[M]+
[=]

2761
[=]+
[=]

1394
[M]+
[=]

2733
[=]+
[=]

2502 1395894
[M]+
[=]

[M]+
[=]

[=]+
[=]

1808
[M]+[M]

Figure 2 Detection of known mutations by NGS in 254 retinal genes. The index patient 19 of family 16 with adRP revealed the p.T494M
mutations in PRPF3, which co-segregates with the phenotype. Two family members never clinically investigated from the last generation (984
and 1167 carrying a question mark) were reported to be not affected but carried the mutation. They may develop the phenotype at a later
stage. In addition variability of the phenotype of this mutation was documented [35]. Two patients, 128 and 943 of family 100 with arRP from
Jewish origin revealed the known EYS mutation p.N137VfsX24, which was found in all screened affected family members. The index patient 893
of family 574 showed the previously described NR2E3 p.G56R mutation, which co-segregated with the phenotype.
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it was successfully achieved for Sanger sequencing using
different additives, which improved the amplification
and subsequent sequencing. If repetitive regions like
ORF15 of RPGR remain problematic for sequencing by
NGS, direct Sanger sequencing of these targets might be
the first screening of choice; in particular for disorders
caused only by a few gene defects such as CSNB, and
xl-RP.
By applying NGS sequencing to our retinal panel,

known and novel mutations were detected in different
patients. We believe that our diagnostic tool is particu-
larly important for heterogeneous disorders like RP, for
which many gene defects with different prevalence have
been associated to one phenotype. It also allows the
rapid detection of novel mutations in minor genes
which are often not screened as a priority by direct San-
ger sequencing. This was the case in our study for three
individuals from one family with adRP in which NGS
detected a novel PRPF8 mutation in both affected and
one unaffected family member (Table 4, Figure 4). In
this family, the RP phenotype is mild and therefore it is
possible that the unaffected member may develop symp-
toms later in life or alternatively it may be a case of
incomplete penetrance as reported for another splicing

factor gene, PRPF31 and recently for PRPF8 as well
[19-22]. Interestingly, a novel TRPM1 mutation was
identified in a patient with adCSNB, a gene previously
only associated with arCSNB [23-26]. This is the first
report of a TRPM1 mutation co-segregating with ad
Schubert-Bornschein type complete CSNB. Since the
location of this mutation is not different compared to
other mutations leading to arCSNB, it is not quite clear
how TRPM1 mutations might lead to either ad or
arCSNB. Functional investigations are needed to validate
the pathogenicity of this variant. Furthermore, this find-
ing suggests that TRPM1 heterozygous mutation carriers
from arCSNB families should be investigated by electro-
retinography to determine whether they display similar
retinal dysfunction as in affected members of the pre-
sented adCSNB family. Detection of a novel RPGR splice
site mutation in family 146 presented a challenge. The
actual disease causing change was concealed under a
wrongly annotated rs62638633, which had previously
been clinically associated to RP by a German group
http://www.ncbi.nlm.nih.gov/sites/varvu?gen-
e=6103&rs=62638633, (personal communication, Mar-
kus Preising). These observations indicate that the
stringent filtering we applied initially can mask those

Table 5 Detection of novel mutations by using the novel genetic approach for retinal disorders

Index Phenotype Pre-
screening

Gene Mutation Allele
State

Read
reference
NGS

Read
variant
NGS

Mutation
verified by
Sanger and
co-
segregation

Conservation Polyphen Sift

CIC00707,
F470

adCSNB
and Best
see Table 3

RHO,
PDE6B,
GNAT1

TRPM1 c.1961A
> C
p.H654P

het 39 38 yes moderately
conserved

possibly
damaging

tolerated

CIC000348,
F232

adRP, mild RHO,
PRPF31,
PRPH2,
RP1, adRP
chip

PRPF8 c.6992A
> G
p.
E2331G

het 13 10 yes moderately
conserved

possibly
damaging

affect
protein
function

CIC000346,
F232

adRP - PRPF8 c.6992A
> G
p.E2331G

het 5 9 yes moderately
conserved

possibly
damaging

affect
protein
function

CIC000347,
F232

as
adRP

- PRPF8 c.6992A
> G
p.E2331G

het 15 17 yes moderately
conserved

possibly
damaging

affect
protein
function

CIC04240,
F2025

arRP,
consang.,
detailed
clinic in
[70]

RS1 CRB1 c.2219C
> T
p.S740F

homo 2 194 yes highly
conserved

probably
damaging

affect
protein
function

CIC00199,
F146

adRP or x-
linked RP
with
affected
carrier

RHO,
PRPF31,
PRPH2,
RP1, adRP
chip

RPGR c.248-2A
> G
splice
defect

hetero 30 22 yes conserved
splice site

n.a. n.a.

CIC04094,
F1915

icCSNB - CACNA1F c.973C >
T
p.Q325X

hemi 0 28 yes n.a. n.a. n.a.
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referenced disease causing variants. Bearing this in mind
one can still first investigate unknown variants, but
should then examine dbSNP for referenced variants
either described to be disease causing, having a low
minor allele frequency or present in interesting candi-
date genes. An accurate discrimination of non-patho-
genic polymorphisms versus disease causing
polymorphism in SNP databases is warranted to resolve
this challenge.
In six families from the investigated cohort the disease

causing mutations still remain to be identified. In the
Stargardt patient with no pathogenic ABCA4 mutations
two variants in CFH were detected, one of which
(rs1061170) had previously been reported to predispose
to age related macular degeneration (AMD) [27-29]. The
second CFH change is a novel variant, affecting a highly
conserved residue, not found in NGS data from the other
19 samples and never associated with a disease. The

variants co-segregated in the only available family mem-
bers, which were the patient’s parents. Apart from the
association with AMD, CFH mutations have been pre-
viously associated with renal diseases, the most common
being membranoproliferative glomerulonephritis and
hemolytic uremic syndrome, which can be also associated
with an eye phenotype [30,31]. No renal dysfunction was
present in our patient. To validate if the two variants
identified in CFH are indeed disease causing, the DNA
samples from other available family members for co-seg-
regation analysis as well as characterization of functional
consequences of the novel variant are needed. One
patient with complete CSNB had an affected nephew and
thus x-linked inheritance was assumed. However, neither
Sanger nor NGS detected a mutation in the only known
x-linked gene, NYX, causing cCSNB. To exclude reces-
sive inheritance TRPM1 and GRM6 were investigated in
detail. Indeed the patient carried a novel heterozygous

Fam 470: BEST1: M1: c.73C>T p.R25W;  TRPM1: M2:c.1961A>C p.H654P 
 

707 
[M1]+[=] 

705 
[M1]+[=] 

706 
[M1]+[=] 

2715 
[=]+[=] 

708 
[=]+[=] 

Best disease 
 

cCSNB  
 

707 
[M2]+[=] 

705 
[M2]+[=] 

706 
[=]+[=] 

2715 
[M2]+[=] 

708 
[M2]+[=] 

OD 

OS 

Arden ratio 

Arden ratio 

a b 

c d e 

Figure 3 Best disease and CSNB co-segregating in one family. a) Sanger and NGS detected in all patients with Best disease a BEST1
mutation. b) NGS detected in all patients with a cCSNB phenotype a novel TRPM1 mutation. c) Fundus colour photographs (above) and fundus
autofluorescence (below) of patient 707 showing multiple yellow deposits within the posterior pole which are hyper autofluorescent d) Electro-
oculogram of patient 707 showing no slight rise after illumination in keeping with the diagnosis of Best disease e) Full Field Electroretinogram of
patient 707 showing ON-bipolar cell pathway dysfunction in keeping with the diagnosis of cCSNB.
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TRPM1 variant, which affects a highly conserved amino
acid and was not identified in the other 19 samples inves-
tigated here (Table 6). However, direct Sanger sequen-
cing of lower covered regions did not identify a second
mutation in this gene. Similarly no mutations in GRM6
were identified. These findings outline the need for addi-
tional family members to determine, through co-segrega-
tion, the pathogenicity of the numerous variants
identified by NGS. This was also true for two other
families with nonsense mutations in CUBN (Fam795)
and RP1L1 (Fam761) (Table 6). The nonsense mutation
in CUBN, co-segregated with the phenotype in most of
the family members (Figure 5). Had we not had access to
additional family members, we might have retained this
gene defect as the underlying cause for adCD and consid-
ered CUBN as a new gene involved in adCD. None of the
other putatively pathogenic mutations identified in
CUBN, TRPM1 and GUCY2D co-segregated with the
phenotype in this family (Table 6, Figure 5). RP1L1 was
already a candidate for adRP [32] but was previously

associated with occult macular dystrophy [33]. In our
study, this variant did not co-segregate with the pheno-
type in other affected family members (data not shown).
This NGS study ended with six genetically unresolved

families, which can be further investigated with whole
exome sequencing. Although, no clear information
about the actual percentage of missing gene defects
underlying each group of inherited retinal disorders
exists, previous studies have reported that in many cases
the genetic cause still needs to be determined [18,34].
Whole exome sequencing approaches allow the detec-
tion of both, novel and known gene defects, but also
generate numerous variants and therefore require the
inclusion of more than one DNA sample for each family
to rapidly exclude non-pathogenic variants. Due to the
higher costs of exome sequencing for one sample com-
pared to targeted sequencing, we propose to initially
perform targeted sequencing in the index patient and
proceed only after exclusion of a known gene defect to
whole exome sequencing.

Fam 2025: CRB1: M: c.2219C>T p.S2740F

Fam 146: RPGR: M: c.248-2A splice defect

Fam 1915: CACNA1F: M: c.973C>T p.Q325X

?

346
[M]+[=]

348
[M]+[=]

347
[M]+[=]

4241
[M]+[M]

4240
[M]+[M]

4499
[M]+[=]

4242
[M]+[=]

4094
[M]

4248
[M]+[=]

Fam 232: PRPF8: M: c.6992A>G p.E2331G

[M]+[=]
219

[M]+[=]
200

[M]+[=]
220

[M]+[=]
199

?

[M]+[=]
222

[M]
221

Figure 4 Detection of novel mutations using NGS in 254 retinal genes. Novel mutations in PRPF8, CRB1, RPGR and CACNA1F co-segregated
in affected and asymptomatic carriers with the adRP, arRP, x-linked dominant and X-liked icCSNB phenotypes respectively. Asymptomatic
individuals are marked with a question mark.
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Table 6 Patients with unsolved genotype and unlikely disease causing mutations

Index Phenotype Pre-
screening

Gene Mutation Allele
State

Read
reference
NGS

Read
variant
NGS

Mutation verified by
Sanger and co-
segregation

Comment

CIC03282,
F1388

Stargardt ABCA4
microarray

ABCA4 c.1268A > G
p.H423R

het 77 61 yes but reported as
polymorphism
[71]

c.6764G > T
p.S2255I
no
additional
variants in
lower
covered
exons

het 2 7 yes but reported
as polymorphism
[72]

CFH c.3482C > A
p.P1161Q

het 77 52 yes conserved,
probably
damaging

c.1204C > T
p.H402Y

het 94 87 yes AMD

CIC01269,
F761

adRP - RP1L1 c.5959C > T
p.Q1987X

het 145 150 yes, did not co-segregate pass to whole
exome
sequencing

CIC01312,
F795

adCD with post-
receptoral defects

RHO,
PDE6B,
GNAT1
adRP chip

CUBN c.127C > T
p.R43X

het 139 102 yes, did not co-segregate pass to whole
exome
sequencing

CUBN c.9340G > A
p.G3114S

het 61 44 yes, did not co-segregate

GUCY2D c.1499C > T
p.P500L

het 41 34 yes, did not co-segregate

TRPM1 c.3904T > C
p.C1302R

het 102 99 yes, did not co-segregate

CIC03225,
F1362

arRP consang. arRP chip PROM1 c.314A > G
p.Y105C

het 120 115 yes, but no additional
mutation

no homo, no
compound hets,
pass to whole
exome
sequencing

GUCY2D c.2917G > A
p.V973L

het 6 2 false positive, not found
by Sanger

DSCAML1 c.592C > T
p.R198C

het 70 81 yes, but no additional
mutation

TBC1D24 c.641G > A
p.R214H

het 27 12 yes, but no additional
mutation

TMEM67 c.1700A > G
p.Y567C

het 80 58 yes, but no additional
mutation

CIC04757
F2364

Index and affected
sister early onset
arCD, macro-
cephaly and
mental retardation
in affected sister
consang.

- IMPG2 c.3439C > T
p.P1147S

homo 0 140 no Polyphen and Sift
benign, not
conserved

PKD2L1 c.1027C > T
p.R343C

het 63 68

c.1202T > G
p.V401G

het 25 19 appeared also
het in 11 of our
samples
appeared also
het in affected
sister but no
other mutation in
less covered
exons
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Conclusions
In summary, our diagnostic tool is an unbiased time
efficient method, which not only allows detecting known
and novel mutations in known genes but also potentially
associates known gene defects with novel phenotypes.
This genetic testing tool can now be applied to large
cohorts of inherited retinal disorders and should rapidly

deliver the prevalence of known genes and the percen-
tage of cases with missing genetic defect for underlying
forms of retinal disorders.

List of abbreviations
ad: autosomal dominant; ar: autosomal recessive; as: asymptomatic; het:
heterozygous; homo: homozygous; hemi: hemizygous; - not noted; consang.:

Table 6 Patients with unsolved genotype and unlikely disease causing mutations (Continued)

DFNB31 c.1943C > A
p.S648Y

het 7 7 yes affected sister
also both variants
but both come
from father, no
other variant in
lower covered
region.

c.2644C > A
p.R882S

het 27 14 yes

EYS c.7597A > G
p.K2533E

het 151 149 yes Affected sister
does not carry
this variant

RPGRIP1 c.2417C > T
p.T806I

het 138 132 no not conserved

CIC04152,
F1955

male x-linked
cCSNB, has
affected nephew

NYX TRPM1 c.470C > T
p.S157F

het 118 130 yes, no other het
mutation.

x-linked
inheritance and
phenotype
verification

Index patients and respective gene defect are highlighted in bold. In some cases also family members were used for NGS.

Fam 795:  
M1: CUBN: c.127C>T p.R43X 
M2: CUBN: c.9340G>A p.G311S 
M3: GUCY2D: c.1499C>T p.P500L 
M4: TRPM1: c.3904T>C p.C1302R 

? 
1396 1402 

+ 

+ + + + 
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Figure 5 Detection of novel mutation by using NGS in 254 retinal genes. Family 795 reveals autosomal dominant cone dystrophy with
post-receptoral defects. Four putative disease causing mutations were investigated on the basis of co-segregation. However, none of them co-
segregated in all affected family members with the phenotype and thus are not considered to be disease causing. Individuals marked with a star
were clinically investigated, patients with a question mark are asymptomatic and patients with a plus sign show high myopia.
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consanguinity was reported; n.a.: not applicable; CSNB: congenital stationary
night blindness; RP: retinitis pigmentosa:
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