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Abstract
Alpha-thalassaemia is inherited as an autosomal recessive disorder characterised by a microcytic hypochromic 
anaemia, and a clinical phenotype varying from almost asymptomatic to a lethal haemolytic anaemia.
It is probably the most common monogenic gene disorder in the world and is especially frequent in Mediterranean 
countries, South-East Asia, Africa, the Middle East and in the Indian subcontinent. During the last few decades the 
incidence of alpha thalassaemia in North-European countries and Northern America has increased because of 
demographic changes. Compound heterozygotes and some homozygotes have a moderate to severe form of alpha 
thalassaemia called HbH disease. Hb Bart's hydrops foetalis is a lethal form in which no alpha-globin is synthesized. 
Alpha thalassaemia most frequently results from deletion of one or both alpha genes from the chromosome and can 
be classified according to its genotype/phenotype correlation. The normal complement of four functional alpha-
globin genes may be decreased by 1, 2, 3 or all 4 copies of the genes, explaining the clinical variation and increasing 
severity of the disease. All affected individuals have a variable degree of anaemia (low Hb), reduced mean corpuscular 
haemoglobin (MCH/pg), reduced mean corpuscular volume (MCV/fl) and a normal/slightly reduced level of HbA2. 
Molecular analysis is usually required to confirm the haematological observations (especially in silent alpha-
thalassaemia and alpha-thalassaemia trait). The predominant features in HbH disease are anaemia with variable 
amounts of HbH (0.8-40%). The type of mutation influences the clinical severity of HbH disease. The distinguishing 
features of the haemoglobin Bart's hydrops foetalis syndrome are the presence of Hb Bart's and the total absence of 
HbF. The mode of transmission of alpha thalassaemia is autosomal recessive. Genetic counselling is offered to couples 
at risk for HbH disease or haemoglobin Bart's Hydrops Foetalis Syndrome. Carriers of alpha+- or alpha0-thalassaemia 
alleles generally do not need treatment. HbH patients may require intermittent transfusion therapy especially during 
intercurrent illness. Most pregnancies in which the foetus is known to have the haemoglobin Bart's hydrops foetalis 
syndrome are terminated due to the increased risk of both maternal and foetal morbidity.

Introduction
Why should α thalassaemia be considered in a forum
dedicated to rare diseases? It is certainly not a rare
genetic trait. On the contrary, it is one of the most com-
mon human genetic abnormalities known. Carriers of α
thalassaemia are found at polymorphic frequencies (>1%)
in all tropical and subtropical populations that have been
studied and, in some areas, the carrier state has almost
gone to fixation. This is because carriers of α thalassae-
mia are thought to be at a selective advantage in areas
where falciparum malaria is or has been endemic. In
areas where the carrier state is common, two clinically
important diseases (HbH disease and Hb Bart's hydrops

foetalis) occur in compound heterozygotes and homozy-
gotes. The reason for discussing this here is therefore not
because these diseases are rare, rather that they may be
rarely considered by physicians outside of the regions
where thalassaemia commonly occurs. For example, a
retrospective study of obstetric records in the U.K. by
Petrou et al. revealed an underdiagnosis of both α0-thala-
ssaemia trait and α-thalassaemia hydrops foetalis[1].
With the massive migrations that have occurred over the
past few decades it is important to bring these rarely con-
sidered diseases to the general attention of clinicians in
Northern Europe and North America.

Disease names and synonyms
The generic term α thalassaemia encompasses all of those
conditions in which there is a deficit in the production of
the α globin chains of haemoglobin (Hb) which is a tetra-
meric molecule including two α-like and two β-like
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globin chains (α2β2). Underproduction of α globin chains
gives rise to excess β-like globin chains which form γ4
tetramers, called Hb Bart's (in foetal life) and β4 tetram-
ers, called HbH (in adult life). Individuals who carry
mutations affecting the α globin genes on one chromo-
some, associated with minimal anaemia, are said to have
α thalassaemia trait. Compound heterozygotes and some
homozygotes for α thalassaemia have a moderately severe
anaemia characterised by the presence of HbH in the
peripheral blood. This condition is referred to as HbH
disease. Finally some individuals who make very little or
no α globin chains have a very severe form of anaemia
which, if untreated, causes death in the neonatal period.
This condition is called the Hb Bart's hydrops foetalis
syndrome [2-5].

Rarely patients have been seen with very large deletions
which remove the α globin genes but also remove many
other genes that surround them. This condition is associ-
ated with developmental abnormalities (including intel-
lectual disability) and is referred to as the α thalassaemia/
mental retardation syndrome on chromosome 16 (ATR16
syndrome: OMIM:141750, reviewed in Higgs et al., 2009
[6] and Wilkie et al., 1990 [7]). Also patients with a rare
form of syndromal X-linked mental retardation associ-
ated with α thalassaemia have been described, in which
the intellectual disability is more severe and the dysmor-
phic features show striking similarities among patients.
This rare condition is called ATR-X syndrome and has
been found to involve mutations in a chromatin associ-
ated protein called ATRX on the X-chromosome (ATR-X
syndrome: OMIM:301040, reviewed elsewhere)[6,8-11].
Finally, an acquired form of alpha-thalassaemia referred
to as the ATMDS syndrome has been described. This
predominantly occurs in elderly males with a pre-malig-
nant, clonal haematopoietic disease called myelodyspla-
sia (MDS). This rare syndrome involves acquired
mutations in the ATRX gene causing α thalassaemia
(OMIM:300448, reviewed in Gibbons et al., 2003;Higgs et
al., 2009)[6,12]. Since these rare conditions have all been
reviewed elsewhere they will not be discussed further in
this synopsis.

Definition/Diagnostic Criteria
Alpha thalassaemia is most frequently suspected initially
on the basis of a routine full blood count. All affected
individuals have a variable degree of anaemia (Hb),
reduced mean corpuscular haemoglobin (MCH/pg),
reduced mean corpuscular volume (MCV/fl) and a nor-
mal or slightly reduced level of the minor HbA2. These
parameters are discussed in greater detail below. When
the level of α globin synthesis falls below ~70% of normal,
in the foetal period, excess γ globin chains form Hb Bart's
which can be detected on routine Hb analysis [13-19]. In

adult life, excess β globin chains form β4 tetramers of
HbH in the cell and these can be identified by staining the
peripheral blood with 1% brilliant cresyl blue (BCB)[20-
22], or when present in sufficient quantity by routine Hb
analysis[20,23]. Previously α thalassaemia was confirmed
by globin chain biosynthesis, when the α/β globin chain
biosynthesis ratio was reduced to less than ~0.8[24-28].
All of these parameters are reduced in α thalassaemia but
none of them alone or in combination can accurately or
consistently predict the genotype for which directed
molecular analysis of the α globin cluster is required and
this is discussed below.

Epidemiology
Like all common globin gene disorders (sickle cell trait
and β thalassaemia) α thalassaemia occurs at high fre-
quencies throughout all tropical and subtropical regions
of the world (Figure 1). In some areas, the carrier fre-
quency of α thalassaemia may be as high as 80-90% of the
population, almost at fixation[29-33]. It is thought that all
of these globin gene disorders (including α thalassaemia)
have been selected because in some way they protect car-
riers from the ravages of falciparum malaria. The micro
epidemiological evidence supporting this is very
strong[34,35]. The mechanisms underlying this protec-
tion have been extensively studied but remain unknown.
Of all globin disorders, α thalassaemia is the most widely
distributed and therefore many individuals in these areas
have interacting combinations of these variants (e.g. both
α and β thalassaemia). Due to differences in the interac-
tions between the various molecular defects underlying α
thalassaemia (see below) HbH disease is predominantly
seen in South East Asia, the Middle East and the Mediter-
ranean. Similarly the Hb Bart's Hydrops foetalis syn-
drome is predominantly seen in South East Asia[36-41].
In passing it should be mentioned that ATR16, ATR-X
and ATMDS syndromes show no geographical bias in
their distributions.

Although the previously established distribution of α
thalassaemia is represented in Figure 1, over the past few
decades there have been massive population movements
so that now the globin gene disorders, thought to be rari-
ties in North European and North American clinical
practice, have become major diagnostic and therapeutic
challenges for our current health care systems[42].

Clinical description
The clinical phenotypes of most individuals with α thala-
ssaemia are very mild and may not be noticed during life
other than when a routine full blood count is examined.
Patients with HbH disease have a variable phenotype and
those with Hb Bart's hydrops foetalis have a lethal form of
anaemia.
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α Thalassaemia trait
Apart from mild to moderate microcytic hypochromic
anaemia (detected on a routine blood count), carriers
(heterozygotes) of α thalassaemia, whatever the molecu-
lar basis (see below), are clinically asymptomatic and the
diagnosis (when made) is often established during a regu-
lar health check or during antenatal screening. Com-
plaints related to more severe anaemias, such as fatigue,
listlessness and shortness of breath are uncommon and
almost certainly related to other concomitant disorders.

HbH disease
HbH disease is most frequently seen in patients who are
compound heterozygotes for two different mutations or
less frequently homozygotes for a moderately severe
molecular defect. They usually produce less than 30% of
the normal amount of α globin. The predominant fea-
tures in HbH disease are anaemia (2.6-13.3 g/dl) with
variable amounts of HbH (0.8-40%), occasionally accom-
panied by Hb Bart's in the peripheral blood. The patients
usually have splenomegaly (which may be severe) and
occasionally this is complicated by hypersplenism. Jaun-
dice may be present in variable degrees and children may
show growth retardation. Other complications include
infections, leg ulcers, gall stones, folic acid deficiency and
acute haemolytic episodes in response to drugs and infec-
tions[5,43]. Older patients often have some degree of iron
overload. The severity of the clinical features is clearly

related to the molecular basis of the disease[5,43,44].
Patients with non-deletional types of HbH disease are
more severely affected than those with the common dele-
tional types of HbH disease[45-53].

Hb Bart's Hydrops Foetalis Syndrome
Infants with the Hb Bart's hydrops foetalis syndrome
have the most severe deficiencies in α globin expression.
While it most frequently results from the inheritance of
no α globin genes from either parent, in some cases it
results from the inheritance of a severe nondeletion
mutation from one parent and no α genes from the other.
Patients on the borderline between severe HbH disease
and Hb Bart's hydrops foetalis syndrome are said to have
HbH hydrops syndrome [45,52,54-56]. Physiologically
non-functional homotetramers γ4 and β4 make up most of
the haemoglobin in the erythrocytes in infants with the
Bart's hydrops foetalis syndrome. They also have variable
amounts of an embryonic Hb Portland (ζ2γ2), which is the
only functional Hb in these infants and must be the only
oxygen carrier keeping these infants alive. The clinical
features are those of a pale oedematous infant with signs
of cardiac failure and prolonged intra-uterine anaemia
(Figure 2). Pronounced hepatosplenomegaly, retardation
in brain growth, skeletal and cardiovascular deformities
and gross enlargement of the placenta are characteristic
features. Infants with the Hb Bart's hydrops foetalis syn-
drome almost always either die in utero (23-38 weeks) or

Figure 1 The world distribution of haemoglobinopathies overlaps the geographic distribution of malaria. The prevalence has increased in 
previously non-endemic areas as a consequence of historical and recent immigration flows, slave-trade, trading activities and colonization. In all these 
regions there is a high prevalence of a thalassaemia. It is believed that carriers of α thalassaemia are protected against malaria and that natural selec-
tion is responsible for elevating and maintaining their gene frequencies.
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shortly after birth, although few cases have been
described in which the neonate is given intensive life-sup-
port therapy and treated with blood transfusion [57-60].

Aetiology (Molecular Basis)
In normal individuals α globin synthesis is regulated by
four α globin genes two on each copy of chromosome 16
(in band 16p13.3 Figure 3) and this genotype is written as
αα/αα. Expression of these genes is dependent on remote
regulatory elements (named Multispecies Conserved
Sequences or MCS-R1 to R4) located far upstream of the
α globin genes in the introns of a flanking, widely
expressed gene (Figure 3). Alpha thalassaemia most fre-

quently results from deletion of one (-α) or both (--) α
genes from the chromosome. Occasionally point muta-
tions in critical regions of the α2 (αTα) or α1 (ααT) genes
may cause, so-called, nondeletional α thalassaemia. Very
rarely, α thalassaemia results from deletion of the MCS-R
regulatory elements (written as (αα)T), in all of these dele-
tions MCS-R2 is always removed and thus appears to be
the major regulatory element. When a mutation(s) com-
pletely abolishes expression from a chromosome this is
called α0-thalassaemia and when the mutation(s) only
partially downregulate expression from the chromosome
this is called α+-thalassaemia.

Figure 2 The Haemoglobin Bart's hydrops syndrome. a. peripheral blood film with immature red-cell precursors and hypochromic, microcytic, red 
cells showing anisocytosis and poikilocytosis; b. stillborn hydropic infant [5].
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α+-thalassaemia due to deletions
The α-globin genes are embedded within two highly
homologous 4 kb duplication units [61-65]. One very
common α-thalassaemia deletion is the rightward dele-
tion, a 3.7 kb deletion caused by reciprocal recombina-
tion between Z segments producing a chromosome with
only one functional α-gene (α-3.7 or rightward deletion)
causing α-thalassaemia and an α-triplication allele with-
out a thalassaemic effect (Figure 4). Likewise a reciprocal
recombination between mispaired X-boxes results in a
4.2 kb deletion, called leftward deletion (-α4.2) [61,66-68].
An increasing number of deletions resulting in the loss of
a single α-gene are reported due to non-homologous
recombination events, most of which are rare, or highly
region specific. The most common α+-thalassaemia dele-
tions are shown in Figure 5. More extensive overviews of
all deletions are reported elsewhere (in: Disorders of
Hemoglobin Cambridge University Press 2009) [69,70].

α+-thalassaemia due to non-deletion types of α-
thalassaemia
Alpha-thalassaemia is more frequently caused by deletion
than single point mutations or nucleotide insertions and
deletions involving the canonical sequences controlling
gene expression. In general the non-deletion α+-thalas-
saemia determinants may give rise to a more severe
reduction in α-chain synthesis than the -α deletion type
of chromosomes. Many mutations have been described
affecting mRNA processing, mRNA translation, and α-
globin stability. Table 1 shows all the currently known
non-deletion mutants causing α+-thalassaemia. Of these
the most common non-deletional variants are the αIVSI(-5

nt)α (in Mediterraneans), polyadenylation site mutations
α2

AATAAG, α2
AATGAA and α2

AATA-- (in the Mediterranean
and Middle East)[71-74], termination codon mutations
leading to elongated Hb variants, such as Hb Constant
Spring (HbCS), Hb Icaria, Hb Koya Dora, Hb Seal Rock

Figure 3 The structure of the α-globin gene cluster on chromosome 16. The telomere is shown as an oval, genes in the region are shown as box-
es. The α-globin regulatory region (MCS-R 1 to 4) is indicated as vertical bars. The scale is in kilobases as indicated above. The alpha-gene cluster is 
enlarged showing the traditional gene names above and the HGVS gene names below. The table below shows the classification of gene defects and 
phenotypic expression.
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and Hb Paksé (middle East, Mediterranean and South
East Asia) [75-79] and structural mutations causing
highly unstable α-globin variants; for example, Hb Quong
Sze, Hb Suan Dok, Hb Petah Tikvah, Hb Adana, Hb
Aghia Sophia [54,80-84]. These common mutations are
summarised in Tables 1 and 2. A regularly updated over-
view is provided by the HbVar web-site [85].

α0-thalassaemia due to deletions
The complete or partial deletion of both α-genes in cis
results in no α-chain synthesis directed by these chromo-
somes in vivo (Figures 6 and 7a). Homozygotes for such
deletions have the Hb Bart's Hydrops Foetalis Syndrome.
Many deletions were described which remove the ζ- and
α-genes and although heterozygotes appear to develop
normally, it is unlikely that homozygotes could survive
even the early stages of gestation since neither embryonic
(ζ2γ2) nor foetal (α2γ2) haemoglobins could be made. Rare
deletions causing α0-thalassaemia remove the regulatory
region, which lies 40-50 kb upstream of the α-globin gene
cluster leaving the α-genes intact. This region composed
of four multispecies conserved sequences (MCS), called
MCS-R1 to R4, correspond to the previously identified
erythroid-specific DNAse1 hypersensitive sites referred

to as HS-48, HS-40, HS-33 and HS-10. Of these ele-
ments, only MCS-R2 (HS-40), 40 kb upstream from the ζ
globin mRNA cap-site has been shown to be essential for
α globin expression. An overview showing all currently
known (αα)T deletions is given in Figure 7b, a regularly
updated summary is given elsewhere (deletions are
reviewed in detail in Higgs et al Disorders of Hemoglobin
Cambridge University Press 2009 [69].

A different spectrum of both α+- and α0-thalassaemia
mutations is often found in different populations as indi-
cated in Table 2 {Bain, 2006 126/id}. Ethnic origin may
therefore guide molecular diagnosis. Knowledge of the
mutations found in a specific population may allow stra-
tegic choice in laboratory diagnostics, especially in selec-
tion of the molecular techniques to be applied.

Genotype/Phenotype Correlations
Although there are now ~128 different molecular defects
known to cause α thalassaemia and an ever increasing
number of potential interactions, the clinical phenotypes
(broadly classified as α thalassaemia trait, HbH disease
and Hb Bart's hydrops foetalis) resulting from the inter-
actions between these various molecular defects can be
simply summarised as in Table 3. The severity of the clin-

Figure 4 Deletions that cause α+-thalassaemia. The homologous duplication units X, Y and Z in which the α-genes are embedded are indicated 
as colored boxes. A cross-over between the mis-paired Z boxes during meiosis gives rise to the -α3.7 and αααanti 3.7 chromosomes. Cross-over between 
misaligned X-boxes give rise to -α4.2 and αααanti 4.2.
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ical phenotype correlates very well with the degree of α
globin chain deficiency. An important additional point is
that, in general, interactions involving non-deletional
forms of α+-thalassaemia result in a more severe pheno-
type than in those with deletional forms of α+-thalassae-
mia [69,87-100].

Diagnosis and diagnostic methods
Initial laboratory testing should include a complete blood
count with red cell indices, HPLC or Hb electrophoresis
and eventually α/β-globin chain synthesis ratio measure-
ment. The latter procedure, however, is sometimes
bypassed by DNA analysis as a less complicated method
to diagnose α-thalassaemia.

Haematology
The red blood cell indices in patients with various geno-
types associated with α-thalassaemia are depicted in fig-
ure 8 and 9. In general, the degree of microcytic (low
MCV), hypochromic (low MCH) anaemia (low Hb)
depends roughly on the number of α genes mutated and
correlates well with the reduction in α-chain synthesis
predicted for each mutant [5,44,101]. The combined use
of HPLC and Capillary Electrophoresis to separate abnor-
mal haemoglobin fractions is of particular importance to
demonstrate HbH in individuals with HbH disease (figure
10) and Hb Bart's in newborns carrying α-thalassaemia
determinants or any Hb variant associated with an α-
thalassaemia phenotype (figure 11). Hb Bart's is found in

a large proportion of neonates with α-thalassaemia but
does not detect all cases with mild α-3.7/αα interactions
and does not clearly distinguish the various α thalassae-
mia genotypes [11,19,102]. A reduction in HbA2 level is
sometimes indicative of α-thalassaemia trait. Although
this nicely distinguishes α and β thalassaemia trait it can
hardly be relied upon as a guide to the degree or type of α
thalassaemia. A reduction in the level of HbA2 is only dis-
tinctive in patients with HbH disease (see figure 12)[103].
Staining the peripheral blood cells with 1% Brilliant Cre-
syl Blue is a sensitive method to visualise inclusion bodies
in the red cells. The typical inclusion-body cells have a
golf-ball like appearance with stippling regularly distrib-
uted over a blue stained background (Figure 13). They
appear occasionally (one to two cells in approximately 10
fields 1000× magnification) in carriers of the --/αα geno-
type and in carriers of many nondeletional defects.
Numerous red cells containing inclusions can be seen in
the BCB-stained peripheral blood smears of patients with
HbH disease.

Alpha/beta-globin chain synthesis
Measuring the ratio of α- and β-globin chain synthesis is
the most direct approach (at the protein level) to diag-
nose α-thalassaemia. The procedure was first described
by Weatherall and Clegg in 1965 [27] and consists of sev-
eral steps, including removal of white blood cells, reticu-
locyte enrichment, in vitro globin chain synthesis in the

Figure 5 Deletions of one α-gene giving rise to α+-thalassaemia. The extent of the deletion is shown as bars, thin lines indicate regions of uncer-
tainty of the breakpoints.
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Table 1: Non-deletional mutations that cause α-thalassaemia

Affected 
sequence

Affected 
gene *

Mutation(s) HGVS Synonym 
Hb- name

Distribution Phenotype

mRNA processing

Cryptic splicing α2 Cd22 C>T c.69C>T p.Gly23Gly Surinamese α+

IVS(donor) α2 IVS I(-5 nt) c.95+2_95+6delTGAGG Mediterranean α+

α1 IVS I-1(g>a) c.95+1G>A Thai α+

α2 IVS II-2 (t>a) c.300+2T>A North-European α+ - α0

IVS(acceptor) α2 IVS I-116 (a>g) c.96-2A>G Dutch α+

α1 IVS I-117 (g>a) c.96-1G>A Asian Indian α+

α2 IVS II-142 (g>a) c.301-1G>A Argentinian α+ - α0

α1 IVS II-148 (a>g) c.301-2A>G Iranian α+

Poly A signal α2 PA del 16 bp c.*74_*89delCCTTCCTGGTCTTT
GA

Arab α+ - α0

α2 PA1 (AATAAG) c.*94A>G Middle East, Med α+ - α0

α2 PA2 (AATGAA) c.*92A>G Med, Chinese α+ - α0

α2 PA3 (AATA- -) c.*93_*94delAA Asian Indian α+ - α0

α2 PA4 (AATAAC) c.*94A>C α+ - α0

mRNA translation

Initiation codon - α3.7 init ATG>GTG c.1A>G p.Met1Val African α0

- α3.7 II init (-2 bp) c.-2_-3delAC N-African, Med α+ - α0

α2 init ATG>ACG c.2T>C p.Met1Thr Med α+

α2 init ATG>A-G c.2delT p.Met1fs Vietnam α+

α1 init ATG>GTG c.1A>G p.Met1Val Med α+

α2 init ATG>-TG c.1delA p.Met1fs South-East Asian α+

Exon I α1 Cd14 G>A c.44G>A p.Trp15X Iranian α0

α2 Cd19 (-G) c.60delG p.His21fs Iranian α+

α2 Cd22 (-C) c.69delC p.Gly23fs African

α2 Cd23 (G>T) c.70G>T p.Glu24X Tunesian α0

- α Cd30/31(-2 bp) c.94_95delAG African α0

Exon II α2 Cd39/41(del/ins) c.118_126delACCAAGACC dup 
TACTTCCC p.Thr40fs

Yemenite-Jewish α+

α1 Cd51-55(-13 bp) c.155_167delGCTCTGCCCAGG
T p.Gly52fs

Spanish α+

α1 Cd62(-G) c.187delG p.Val63fs African

α1 Cd78(-C) c.237delC p.Asn79fs Black/Chinese

α2 Cd90 A>T c.271A>T p.Lys91X Middle Eastern α+

Exon III α1 Cd108(-C) c.326delC p.Thr109fs Jewish α+ - α0

α2 Cd113/114(-C) c.342_343delC p.Leu114fs Unknown

α2 Cd113-116(-12 bp) c.[339C>G;340_351delCTCCCC
GCCGAG]

Leida Spanish α+ - α0

α2 Cd116 G>T c.349G>T p.Glu117X African α+

α1 Cd131(+T) c.396_397insT Pak Num Po Thai α0

Termination 
codon

α2 Term Cd TAA>CAA c.427T>C p.X143Gln Constant 
Spring

South-East Asian α+

α2 Term Cd TAA>AAA c.427T>A p.X143Lys Icaria Med α+
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α2 Term Cd TAA>TCA c.428A>C p.X143Ser Koya Dora Indian α+

α2 Term Cd TAA>GAA c.427T>G p.X143Glu Seal Rock African α+

α2 Term Cd TAA>TAT c.429A>T p.X143Leu Paksé Laotian, Thai α+

Post translational

Exon I - α Cd14 T>G c.43T>G p.Trp15Gly Evanston African α+

α2 Cd21 G>T c.64G>T p.Ala22Ser Zoetermeer Dutch α+

α2 Cd21 G>C c.64G>C p.Ala22Pro Fontaine-
bleau

French α+

α2 Cd29 T>C c.89T>C p.Leu30Pro Agrinio Med α+

α2 Cd30(-3 bp) c.91_93delGAG p.Glu31del Chinese α+ - α0

α2 Cd31 G>A c.95G>A Chinese α+ - α0

Exon II α2 Cd32 G>A c.99G>A p.Met33Ile Amsterdam Surinamese black α+ - α0

α2 Cd33 T>C c.101T>C p.Phe34Ser Chartres French α+

α2 Cd35 T>C c.106T>C p.Ser36Pro Evora Filipino, Portugese α+ - α0

α1 Cd37(-3 bp) c.112_114delCCC Heraklion Greece α+ - α0

α2 Cd59 G>A c.179G>A p.Gly60Asp Adana Chinese α+ - α0

α1 Cd60/61(-3 bp) c.184_186delAAG Clinic Spanish α+ - α0

α2 Cd62(-3 bp) c.187_189delGTG Aghia Sophia Greek α0

α1 Cd64-74(-33 bp) c.196_228delGCGCTGACCAAG
GCCGTGGCGCACGTGGAC

Greek α0

α2 Cd66 T>C c.200T>C p.Leu67Pro Dartmouth Caucasian α+ - α0

α2 Cd93 T>G c.281T>G p.Val94Gly Bronte Italian α+

α1 Cd93-99(dup21 bp) c.280_300dupGTGGACCCGGT
CAACTTCAAG

Iranian α+ - α0

Exon III α2 Cd103 A>T c.311A>T p.His104Leu Bronovo Turkish α+

α2 Cd104 G>A c.314G>A Cys105Tyr Sallanches French/Pakistani α+

α1 Cd104 T>A c.313T>A p.Cys105Ser Oegstgeest Surinamese α+

α2 Cd108 C>A c.326C>A p.Thr109Asn Bleuland Surinamese α+

α2 Cd109 T>G c.329T>G p.Leu110Arg Suan Dok Thai α+

α Cd110 C>A c.332C>A Ala111Asp Petah Tikva Middle East α+

α1 Cd119 C>T c.358C>T p.Pro120Ser Groene Hart or 
Bernalda

Moroccan α+

α2 Cd125 T>G c.377T>G p.Leu126Arg Plasencia Spanish α+

α2 Cd125 T>C c.377T>C p.Leu126Pro Quong Sze Chinese α+

- α3.7 Cd125 T>A c.377T>A p.Leu126Gln Westeinde Jewish α0

α1 Cd129 T>C c.389T>C p.Leu130Pro Tunis-Bizerte Tunisian α+

α2 Cd129 T>C c.389T>C p.Leu130Pro Utrecht Dutch α+

α2 Cd130 G>C c.391G>C p.Ala131Pro Sun Prairie Asian Indian α+

α2 Cd131 T>C c.394T>C p.Ser132Pro Questembert French/
Yugoslavian

α+

α2 Cd132 T>G c.398T>G p.Val133Gly Caen Caucasian α+

α2 Cd136 T>C c.410T>C p.Leu137Pro Bibba Caucasian α+

Del; deletion, Dup; duplication, ins; insertion, Cd; codon, PA; poly(A)signal, term; termination codon, init; initiation codon
* The duplicated α-globin genes, α1 and α2 on the short arm of chromosome 16, are named HBA1 and HBA2 respectively according to the HUGO 
nomenclature. For practical reasons there will be referred to them as α-genes in the text.

Table 1: Non-deletional mutations that cause α-thalassaemia (Continued)
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Table 2: Alpha-thalassaemia mutations in different ethnic groups

Ethnic group Type of thal Mutation(s) Occurrence

Mediterranean α0 - - MED I Relatively frequent in Greece, Cyprus, Turkey

- - MED II Relatively rare, Southern Italy, Greece, Turkey

- (α)20.5 Common in Greece, Cyprus, Turkey

α+ - α3.7 Common in all Mediterranean populations

α IVS I(-5 nt) α Relatively common

αConstant Spring α Relatively rare in Greece, independent event from CS in SE-Asia

αα cd119C>T Hb Groene Hart, common in Moroccan, Tunisian

α+ - α0 α PA1(AATAAG) α In homozygous causing HbH disease, compound heterozygote with α0 

-thal deletion causing an Hb Bart's HF-like syndrome

α PA2(AATGAA) α

Middle East α0 - - MED I Common in Iran, Palestinians, Arab population

α+ - α3.7 Common in Iran, Palestinians, Arab population

α+ - α0 α PA1(AATAAG) α Relatively common in Arab population

India α+ - α3.7 Common

- α4.2 Less common

α Koya Dora α Relatively rare

α IVS I-117 α Relatively rare

α+ - α0 α PA3(AATA- -) α Also found in Hindustani from Surinam

South-East Asia α0 - - SEA Most common deletion among Asians world wide

- - FIL Mainly in Philippinians

- -THAI Common among Thai

α+ - α3.7 Relatively common

- α4.2 Relatively rare

αConstant Spring α One of the most common non-deletion variants in Chinese

αSuan Dok α Highly unstable α-chain

αQuong Sze α Highly unstable α-chain

αPaksé α Highly unstable α-chain, found in Thai, Laotian

αinit A-G α Common in Vietnam

αinit -TG α Common in South-East Asia

African, Afro-American and 
Afro-Caribbean

α0 - α3.7 init GTG One of the few α0-thal alleles in African population

- α3.7 init (-2 bp) One of the few α0-thal alleles in North-African population

α+ - α3.7 Common

- α3.7 Cd14 T>G Hb Evanston, relatively rare, also found as αTα allele in Surinamese

αSeal Rock α Relatively rare

North-European, Caucasian α0 - - Dutch I Rare among Dutch, Germans

- - Dutch II Rare, found in different Dutch families with common ancestor

- - Brit Rare, found in different British families with common ancestor

α+ αIVS1-116α Rare, found in different independent Dutch families

αIVSII-2α Very rare, found in Dutch families with common ancestry

αcd129α Hb Utrecht, found occasionally in Dutch families

Adapted from Barbara J. Bain, Haemoglobinopathy Diagnosis 2nd edition 2006 {Bain, 2006 126/id}
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presence of radio-actively labelled Leucine, separation of
the newly synthesized, radio-actively labelled α- and β-
globin chains and measurement of the radio-active signal.
If the α/β ratio appears lower than ~0.8 this is indicative
of α-thalassaemia, a ratio around 0.75 being consistent
with the loss of expression of a single α gene (-α/αα), 0.5
for two α genes (--/αα) and 0.25 for three α-genes (--/-α)
[24,25,27,28].

Molecular analysis
Over the past 30 years it has become increasingly possi-
ble to diagnose α thalassaemia accurately and define the
precise defects underlying these disorders using a variety
of molecular genetic approaches. Ultimately, most α
globin rearrangements have been characterised by South-
ern blotting and DNA sequence analysis. However, for
today's diagnostic demands these techniques are far too
laborious to apply in each case, and from the original
work defining these mutations, rapid screening assays
have been developed.

Gap-PCR has been developed for the 7 most common
α-thalassaemia deletions. This method is applied to
detect the 2 most common α+ thalassaemia deletions -α3.7

and α-4.2 and the 5 α0-thalassaemia deletions -(α)20.5, - -
SEA, - - Med I, - - Thai and - - Fil [104-106].

When a point mutation (non-deletional mutation) is
suspected re-sequencing the α genes has become a rou-
tine procedure. The α genes are relatively small (~1.2 kb)
which allows them to be sequenced rather easily com-
pared to many other genes involved in human genetic
disease, like for instance Duchenne Muscular Dystrophy
(DMD gene; ~2.3 Mb), Cystic Fibrosis (CF-gene; ~250 kb)
and Breast Cancer (BRCA1 and BRCA2 genes, ~16 and
~10 kb respectively)[107-109]. However, the GC-richness
and the high homology between the duplicated α-genes
require the use of high fidelity, heat stable polymerases,
specific reaction conditions (using DMSO and betaine)
and limits the choice of specific primers for PCR. The α-
genes can be conveniently sequenced in two overlapping
fragments for each of the duplicated α1 and α2 genes
[19,110,111].

For suspected but currently unknown rearrangements,
Southern blotting or MLPA analysis may be used. South-
ern blot is the classical method to detect deletions caus-
ing α-thalassaemia [112-117]. More recently Multiplex
Ligation-dependent Probe Amplification (MLPA) is used,
based on ligation of multiple probe-pairs hybridised
across a (usually large) region of interest (Figure 14), fol-
lowed by semi-quantitative amplification using universal-
tag PCR primers and subsequently fragment analysis.

Figure 6 Deletions of two α-genes giving rise to α0-thalassaemia.
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This is a valuable alternative for Southern blot analysis
and a supplementary method to gap-PCR when investi-
gating known and unknown deletions causing α-thalas-
saemia [111,118-120].

Differential diagnosis
Sometimes carriers of α+-thalassaemia present with nor-
mal haematology, especially carriers of -α3.7 and nondele-
tional mutations affecting the α1-gene. Such individuals
may be normocytic or borderline hypochromic without
anaemia. These can only be found by chance during rou-
tine molecular analysis for haemoglobinopathies.

Occasionally, especially in countries where thalassae-
mia is uncommon, α-thalassaemia trait may be confused
with iron deficiency anaemia, especially when the iron
status is not carefully assessed. Haematological parame-
ters for thalassaemia and iron deficiency are quite similar
therefore ferritin levels should be measured. If the micro-
cytic hypochromic parameters persist in a patient with
normal levels of ferritin or Zinc Protoporphyrin (ZPP, a

measure for long-lasting iron depletion), elevated RBC
and normal (or low) HbA2, (especially in patients origi-
nating from areas where haemoglobinopathies are com-
mon) there is a good chance that the individual is a
carrier of α-thalassaemia. Molecular analysis is usually
required, especially in silent α-thalassaemia and α-thalas-
saemia trait to confirm the haematological observations.

There is a difference in clinical severity between dele-
tional (most common) and non-deletional HbH disease
[43,47,69,89,91,94-96,98,99]. The clinical diagnosis of
deletional HbH disease (the mildest form) is often made
only after the detection of complications, such as exacer-
bations of the anaemia induced by infections, growth fail-
ure (in children) or findings of splenomegaly
[5,43,121,122]. The laboratory findings show a pro-
nounced microcytic hypochromic anaemia and the pres-
ence of inclusion bodies. HbH and Hb Bart's are fast
moving haemoglobins appearing on electrophoresis or
HPLC, however, they are unstable and may go unde-
tected. The more severe forms of HbH disease are pre-

Figure 7 (continuation of figure 6) a. Large deletions involving both α-genes and b. deletions of the α-globin regulatory region leaving the 
α-genes intact.
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Table 3: Interactions in α-thalassaemia

α+ α0

α α α αT - α αTα - αT - - (αα)

α0 - - T H H H, Hy H Hy

(αα) T H

α+ - αT T Unk H T H

αTα T Unk T T, H

- α T Unk T

α αT T Unk

α α N

Abbreviations: (αα), non-deletion α0 thalassaemia (due to upstream deletion); --, deletion α0 thalassaemia;
N, non-thalassaemic; T, α-thalassaemia trait; H, HbH disease; Hy, Bart's hydrops foetalis syndrome; Unk, unknown, not observed yet. The 
severity of the condition, thalassaemia trait or HbH disease is determined by the severity of down-regulation by the non-deletion mutant, this 
remains to be determined through further observation (adapted from Weatherall and Clegg 2001)[5].

Figure 8 Red blood cell indices in patients with various genotypes associated with α-thalassaemia. The bar shows the mean and standard de-
viation. a. Haemoglobin level (Hb in g/dl), b. Red Cell Count (RBC indicated as × 1012/l), these are sex-dependent (blue for male distribution, pink fe-
male distribution). (adapted from Higgs 1993, Wilkie 1991) [44,101].
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dominantly those involving non-deletion mutations, of
which Hb CS is the most common in South-East Asia.
This form is characterized by a significantly more ineffec-
tive erythropoiesis and erythroid apoptosis than the dele-
tion types of HbH disease. The haemoglobin is lower (on
average 2 g/dL), but the MCV higher due to overhydra-
tion of cells containing HbCS [2,123-127].

Hydrops Foetalis without α-thalassaemia is a common
non-specific finding in a wide variety of foetal and mater-
nal disorders [128-131]. The distinguishing features of
the Hb Bart's hydrops foetalis syndrome is the presence
of Hb Bart's and the total absence of HbF, which is easily
differentiated by HPLC or Hb-electrophoresis. Although
there have been a few reports of Hydrops Foetalis infants
with very low levels of α-chain synthesis and HbH
hydrops [45,52,54,55,99,127].

Genetic counselling and antenatal diagnosis
When both parents carry an αo thalassaemia mutation (--
/αα) the risk of their offspring having Hb Bart's hydrops
foetalis is 1:4 (25%). When one parent carries αo thalas-
saemia (--/αα) and the other carries an α+ thalassaemia (-

α/αα) the risk of their offspring having HbH disease is 1:4
(25%). If the carrier of α+ thalassaemia is a homozygote
clearly the risk of HbH disease is 1:2 (50%). Since there
are many different alleles of αo and α+ thalassaemia,
genetic counselling may be more complex than outlined
in this simple model.

In families with α thalassaemia the main reason for
offering prenatal diagnosis is to avoid pregnancies with
the Hb Bart's hydrops foetalis syndrome which causes
neonatal death. Continued pregnancy may also present a
considerable risk to the mother. Prenatal diagnosis for Hb
Bart's is offered when both parents are found to be carri-
ers of α0-thalassaemia trait. This is of most importance in
individuals of South East Asian origins. Although some
reports have demonstrated the feasibility of treating this
syndrome, the lack of knowledge of the long-term prog-
nosis and the capacity for treating such individuals prob-
ably do not justify changing the conventional
management of offering prenatal diagnosis and selective
abortion for Hb Bart's Hydrops Foetalis syndrome.

The syndrome of HbH disease is usually mild (thalas-
saemia intermedia) but there is considerable variability in

Figure 9 (continuation of figure 8) a. Mean Cellular Volume (MCV in fl) and b. Mean Cell Haemoglobin (MCH in pg) (adapted from Higgs 
1993, Wilkie 1991) [44,101].
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the clinical and haematological severity. Although, pre-
cise characterisation of the mutations involved allows
some prediction of the severity of the disease this is by no
means certain, which makes prenatal diagnosis offered to
parents at risk of having a child with HbH disease a com-
plicated ethical issue. Most cases resulting from simple
deletion of the α globin genes are mildly affected. Nearly
all severe cases have at least one nondeletional allele.
However the clinical course can be influenced by other
genetic factors, environmental factors and infections. In
rare cases the interaction of α0-thalassaemia with a non-
deletional α+-thalassaemia allele has led to individuals
with hydrops foetalis syndrome [54,99,127]. When there
is a risk of such severely affected individuals there may be
a case for considering prenatal diagnosis.

Management including treatment
Alpha thalassaemia trait
Carriers of α+- or α0-thalassaemia alleles generally do not
need treatment, because their anaemia is either very mild
or absent due to a compensating high red blood cell
count. On the other hand, once a diagnosis of α thalassae-

mia trait is made, there is a tendency to discard iron-defi-
ciency as a subsequent cause of anaemia. Carriers of α
thalassaemia can be anaemic as a consequence of co-
existing nutritional deficiencies, such as iron deficiency,
folate or vitamin B12 deficiencies and should be managed
correctly from this point of view. Of course prophylactic
iron should never be given to carriers of α thalassaemia
who are at risk of developing iron overload if treated
inappropriately.

HbH disease
HbH disease may be a mild disorder, but recent studies
suggest its clinical course is often more severe than previ-
ously recognized [43,122,123,125-127]. As discussed
above, the type of mutation influences the clinical sever-
ity of HbH disease. The most common form is the dele-
tion type, which causes a milder form of HbH disease.
These patients may require intermittent transfusion ther-
apy especially during intercurrent illness. Chronic trans-
fusion therapy is very uncommonly required in this
group. However, patients with non-deletional types of
HbH disease may have moderately severe splenomegaly

Figure 10 HPLC and Capillary Hb electrophoresis patterns of an adult with HbH disease. The HbH (β4 tetramers) peak elutes from the column 
as a compressed fraction, and as a fast moving fraction in electrophoresis.
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Figure 11 HPLC and Capillary Hb electrophoresis patterns of a neonate with α thalassaemia trait (--/αα) and a significant amount of Hb 
Bart's (γ4 tetramers). Hb Bart's in newborns with α thalassaemia disappears rapidly after birth. In newborns with Hb H disease, Hb Bart's will be sub-
stituted by HbH after birth. In Hb Bart's hydrops foetalis syndrome due to homozygosity of α0-thalassaemia only Hb Bart's is seen.

Figure 12 Mean and standard deviation of HbA2 in different α-
thalassaemia genotypes.

Figure 13 An inclusion body positive cell seen in Brilliant Cresyl 
Blue stained red cells of a α0-thalassaemia carrier. Inclusion Bodies 
are β4-tetramers precipitating on the red cell membrane, which dam-
ages the membrane and induces haemolysis. HbH is unstable and in-
clusion body positive cells are more difficult to find in older blood 
samples. The number of inclusion body cells seen after staining is 
much lower in α0-thalassaemia carriers than in patients with HbH dis-
ease (1 in 5-10 fields versus several per field at 1000× microscopic mag-
nification).
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and require more regular transfusion and ultimately sple-
nectomy [5,69,125]. In some studies almost half of such
patients have required repeated transfusions, particularly
in early infancy and later adulthood [2,5,69,124,132].
However, there is a marked clinical variation in both cate-
gories. Iron overload is uncommon in HbH disease
patients (compared with β thalassaemia) but has been
recorded in older patients (>45 years) and those treated
with regular blood transfusion.

Hb Bart's Hydrops Foetalis Syndrome
Most pregnancies in which the foetus is known to have
the Bart's hydrops foetalis syndrome are terminated. In a
very small number of cases intra-uterine transfusions fol-
lowing early detection of homozygous α0-thalassaemia
have resulted in the birth of non-hydropic infants, some
without significant neurological or congenital abnormali-
ties, however, most survivors experience a stormy perina-
tal course and a high prevalence of congenital urogenital
and limb defects [5,133-137]. Affected infants who sur-
vive are good candidates for haematopoietic stem cell

transplantation[60,138]. Obstetric complications and the
necessity for long-term transfusion therapy are however
serious arguments for counselling and selective abortion.
Increased risk of both maternal and foetal morbidity
should be taken into account when counselling couples at
risk for having a child affected with this syndrome
[5,44,134].

Prognosis
There is no reason to think that carriers for α thalassae-
mia have any altered prognosis for life compared to the
normal population. The prognosis for patients with HbH
disease who are newly emerging in previously non-
endemic countries, like Northern Europe and Northern
America, is less clear. Anecdotally many patients with
HbH disease appear to lead a normal life in all respects.
Some even remain undiagnosed throughout their lives.
However, detailed actuarial studies are not available.
When complications arise, of course the outcome
depends on the awareness and availability of health care

Figure 14 The principle of Multiplex Ligation dependent Probe Amplification (MLPA). a. Probe pairs at different locations along the region of 
interest are hybridised specifically head-to-tail to the target sequence and subsequently ligated. The ligated probes are amplified by quantitative PCR 
using fluorescent labelled primers complementary to the tag-sequences and separated by capillary electrophoresis on an automated fragment ana-
lyzer. b. peak heights represent the amount of amplified product of each separate probe pair. c. By dividing the peak heights of the patient sample 
and a normal control for each fragment, the ratio's of 0.5 shown in the graph mark the deletion of certain probes located along the genome, indicating 
the presence of a deletion of one allele.
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systems. Certainly some complications suffered by
patients with HbH disease are life threatening in the
absence of adequate medical care [5,44,123,124]. A long
term problem for all patients with HbH disease is the
unwanted accumulation of iron which may be more of a
problem for those with severe HbH disease with non-
deletional α- thalassaemia [43,139,140].

Clearly, previously undiagnosed and untreated infants
with the Hb Bart's hydrops foetalis syndrome die in the
perinatal period. The recent attempts to rescue infants
with this syndrome either by intra-uterine transfusion or
by transfusion in the perinatal period have met with vari-
able success. As discussed above many infants develop
other irreversible abnormalities during foetal life and
even with rescue the infant will be required, either to
receive lifelong blood transfusion and iron chelation ther-
apy, or bone marrow transplantation with its attendant
risks.

Unresolved questions
1. How is the expression of genes in the α- (and β-)
globin gene cluster regulated and how can it be influ-
enced? A detailed understanding of globin gene regu-
lation might hold the key to developing new
treatments for both α and β thalassaemia.
2. What other factors (genetic and environmental)
influence the clinical severity of HbH disease and
might explain the large variability even between indi-
viduals with the same α globin genotypes?
3. What role does α-thalassaemia play in modifying
the natural history of sickle cell disease and β-thalas-
saemia major? These interactions are not always well
understood.
4. In what way are carriers of α-thalassaemia pro-
tected from some of the effects of malaria?
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