
Webb et al. Orphanet Journal of Rare Diseases          (2024) 19:183  
https://doi.org/10.1186/s13023-024-03188-9

RESEARCH

An algorithm to identify patients aged 0–3 
with rare genetic disorders
Bryn D. Webb1,2*†  , Lisa Y. Lau2†, Despina Tsevdos3, Ryan A. Shewcraft2, David Corrigan2, Lisong Shi2, 
Seungwoo Lee2, Jonathan Tyler2, Shilong Li2, Zichen Wang2, Gustavo Stolovitzky2, Lisa Edelmann2, Rong Chen2, 
Eric E. Schadt4† and Li Li2*† 

Abstract 

Background With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis 
through structured electronic medical record data is challenging given incompleteness of records, inaccurate medi-
cal diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought 
to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0–3 
diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders.

Results Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. 
The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 
children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated 
that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy.

Conclusions The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting provid-
ers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist.
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Background
The widespread adoption of electronic medical record 
(EMR) systems has the potential to enable large-scale 
population-based studies characterizing patients with 
rare disorders [1]. Groups from Clinical Sequencing 
Exploratory Research (CSER) and Electronic Medical 
Records & Genomics (eMERGE) have identified these 
patient populations by locating genomic information 
from EMR systems [2, 3]. However, they have also noted 
that genetic information is most commonly stored in 
unstructured formats, such as PDF files or in paragraphs 
of free text in medical notes, making genetic informa-
tion results challenging to find. Additionally, CSER and 
eMERGE have not pursued a global approach to identify-
ing patient populations with confirmed genetic disorders 
or patients yet to be diagnosed with a genetic condition, 
but rather whose medical records indicate that diagnostic 
genetic testing is warranted. Indeed, digital phenotyping 
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studies using EMR data have largely focused on identi-
fying populations with specific individual diseases, such 
as extracting patients with pediatric epilepsy, childhood 
obesity, or Noonan syndrome [4–7].

When using EMR data to identify patient populations 
affected with rare genetic disorders, focusing on a spe-
cific rare genetic disorder diagnosis for any given patient 
is error-prone for many reasons. First, of 6519 rare disor-
ders assessed, only 11% have International Classification 
of Disease 9 (ICD-9) codes and 21% have ICD-10 codes; 
some ICD codes are nonspecific, often with multiple 
phenotypes corresponding to a single ICD code [8]. Fur-
thermore, physicians and clinicians sometimes log cer-
tain ICD codes as they rule in or out a given condition, 
or when a condition is part of a differential diagnosis, yet 
still unconfirmed. Diagnosis codes may also be inaccu-
rate or incomplete [9].

Accordingly, algorithms that assess the risk of genetic 
disorders have the potential to improve healthcare deliv-
ery by assisting physicians and clinicians with clini-
cal decision-making, including guiding when to order a 
diagnostic genetic test and/or refer a patient to a medical 
geneticist or other specialists. Further, such algorithms 
could also be leveraged to identify rare genetic disor-
ders patient populations to carry out cross-sectional and 
longitudinal epidemiological studies, assess healthcare 
utilization, and flag patients who may be considered for 

participation in specialized undiagnosed disease pro-
grams and precision medicine initiatives as underdiagno-
sis of rare genetic disorders is not uncommon [10].

As a collaborative, multidisciplinary team, we devel-
oped a digital phenotyping algorithm that used struc-
tured EMR data and assessed 13 criteria to identify 
patients from birth to 3 years of age who have been diag-
nosed with a rare genetic disorder or who are at high 
risk for such a diagnosis. We validated the algorithm 
through blinded chart review by a pediatrician and a clin-
ical geneticist. To the best of our knowledge, we are the 
first to generate a digital phenotyping algorithm beyond 
using ICD codes to identify children presenting with ill-
ness with an increased risk for genetic disorders and 
employed this algorithm to assess healthcare outcomes in 
a large, diverse, pediatric population.

Results
Distribution of the 13 criteria in PheIndex
Our cohort included 93,154 newborns linked to 68,893 
mothers who delivered in the Mount Sinai Health Sys-
tem (MSHS) from 2007 to 2019, with clinical features 
collected to 2020 (Table  1). We first assessed the fre-
quency of each of the 13 PheIndex digital phenotyping 
criteria in our cohort and summarized the number of 
children aged 0 to 3  years old that satisfied each of the 
13 criteria (Supplemental Table S1). The most common 

Table 1 Demographic information of the study cohort (N = 93,154)

All

# 93,154

Demographics & socioeconomics 
of mothers

Delivery age, median [Q1,Q3] 32.5 [28.2,36.1]

Race, n (%)

African-American/Black 9423 (10.1)

Asian 6911 (7.4)

Caucasian/White 52,667 (56.5)

Hispanic/Latino 15,543 (16.7)

Native American 201 (0.2)

Other 5747 (6.2)

Unknown 2662 (2.9)

Health Insurance Mother on Medicaid, n (%) 29,219 (31.4)

Child on Medicaid, n (%) 27,392 (29.4)

Child switched to Medicaid, n (%) 154 (0.2)

Birth of children Year of birth, median [Q1,Q3] 2015 [2011,2017]

Pre-term birth, n (%) 11,676 (12.5)

Birth facility, n (%)

Mount Sinai Hospital 79,350 (85.2)

Mount Sinai West 5916 (6.4)

Other 7888 (8.5)

Record completeness latest follow-up age (days), median [Q1,Q3] 16.0 [0.0,596.0]

# of encounters, median [Q1,Q3] 2.00 [1.00,6.00]
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criteria were multiple ER visits (3,919; 4.22%), followed 
by developmental delay (3,159; 3.39%), and multiple visits 
to specialists (3,091; 3.32%). The least common criteria 
were metabolic disease diagnosis codes (82; 0.09%) and 
feeding support (132; 0.14%). Fig. 1A and 1B demonstrate 

the expected temporal relationship for achieving each 
criterion.

We generated a heatmap to show the number and 
percentage of patients who fell into different major and 
minor criteria combinations (Supplemental Fig. S1). The 

Fig. 1 Distribution of PheIndex critera of children in the cohort. A, B Cumulative distribution of time when patients first meet each of the 13 
PheIndex criteria. Only patients that met each criterion within the three-year limit were included in each cumulative distribution. A is sorted 
by the percentage of patients meeting the criteria at 200 days (least number of patients at the top). C Bar graph showing the number 
and percentage of patients with passing different numbers of PheIndex criteria. D Distribution of PheIndex scores for children within the mother–
child cohort. E, F Clustered heatmap showing the Jaccard index between possible pairs of PheIndex criteria in the pre-term (E) and full-term (F) 
cohorts. The number and percentage of patients for each criterion are labeled



Page 4 of 8Webb et al. Orphanet Journal of Rare Diseases          (2024) 19:183 

distribution for the total number of criteria for each child 
is given in Fig. 1C. A large majority of patients (88.51%) 
did not meet any of the 13 criteria, and 98.55% met ≤ 2 
criteria. We showed the distribution of PheIndex Clas-
sification – children who presented with illness with an 
increased risk for genetic disorders or not – stratified by 
the PheIndex Score (Fig. 1D), as the PheIndex Classifica-
tion depends on the specific combination of major and 
minor criteria for each patient. The majority of patients 
had a PheIndex Score ≤ 2 (97.23%), indicating that most 
children in our study population were not likely to have 
a rare genetic disorder. With our 13 criteria, the PheIn-
dex Classification identified 1,088 children who were 
presenting with illness with an increased risk for genetic 
disorders out of 93,154 children (1.2%).

In the full-term cohort, heart surgeries and prolonged 
NICU stay had the highest Jaccard similarity of 0.44, 
in line with what we would expect to observe clinically 
(see Fig.  1E and 1F). In the pre-term cohort, prolonged 
NICU stay was not chosen to be a criterion because the 
majority of pre-term infants have an extended NICU stay 
regardless of whether they have a rare genetic disorder or 
not. Additionally, multiple specialists and developmen-
tal delay had a Jaccard similarity coefficient of 0.24 (the 
second highest ranked similarity) in the pre-term cohort 
and 0.18 (the third highest ranked similarity) in the full-
term cohort, consistent with standard clinical practice 
in which those with developmental delay are referred to 
specialists such as developmental pediatricians, pediatric 
neurologists, and/or clinical geneticists.

Validation of PheIndex: 13 criteria and overall classification
First, we evaluated the accuracy of the values that were 
extracted from the EMR and assigned to the 13 differ-
ent criteria for each patient, by comparing PheIndex’s 
identification of each of the 13 criteria against a pediatri-
cian’s evaluation directly from the clinical notes for each 
patient, for a sample of 200 children (Table  2). The 200 
children were sampled from those classified as presenting 
with illness with an increased risk for genetic disorders 
positive for a rare genetic condition (N = 100) and those 
classified as negative (N = 100). From this comparison, 
our digital phenotyping algorithm achieved an average 
accuracy of 94% across the 13 criteria. Accuracies were 
≥90% for all criteria except for “prolonged NICU stays”, 
which yielded an accuracy of 81%.

Next, we compared the PheIndex Classification against 
the classifications made by a pediatrician/medical geneti-
cist (Table  3). Among the 200 children reviewed, 12 
patients did not have sufficient clinical information for 
the medical geneticist to assess whether a genetic disor-
der may be present. Ten of these 12 patients were born 
extremely prematurely (born before 28 weeks gestation), 

which led to uncertainties as to whether the criteria 
that were met was because of prematurity or because 
of an underlying genetic disorder (as determined by the 
medical geneticist). Therefore, these 12 patients were 
excluded from this performance evaluation. Among 
the 188 patients remaining (88 classified as positive by 
PheIndex and 100 classified as negative), 85 patients were 
deemed to be true positives (definitively or possibly has 
a rare genetic disorder by chart review, 90% sensitivity/
recall) and 91 patients were deemed to be true negatives 
(does not have a genetic disorder, 97% specificity). Three 
patients who were classified as positive by PheIndex were 
not thought to have a genetic disorder (false positive), 
and 9 patients were thought to definitively or possibly 
have genetic disorders but were classified as negative by 
PheIndex (false negative), yielding a positive predictive 
value (PPV) of 97%, negative predictive value (NPV) of 
91%, and 94% accuracy. If we considered the prevalence 
of rare genetic disorders to be 3–3.6% of all livebirths 
[11], the adjusted PPV ranges from 48.1% to 48.3% [12].

Discussion
Identifying pediatric patients across an entire population 
with or who possibly have a rare genetic disorder is criti-
cal for improving patient outcomes. We and others have 
attempted to identify patients with specific genetic disor-
ders using EMR data, but have found that such a process 
is not straightforward, largely due to coding differences, 
unconfirmed diagnoses, variation in disease names and 
terminology, and inaccurate information represented in 
medical records [13, 14]. For most rare genetic disorders, 
it is difficult to identify patients with specific diagnoses, 
given ICD codes are often nonspecific [1, 15, 16]. Addi-
tionally, seeking to analyze individual diseases, even in 

Table 2 Accuracy of digital phenotyping algorithm compared 
to chart review for individual PheIndex criteria

PheIndex Criteria Accuracy

prolonged NICU stay 81%

prolonged inpatient stays 98%

multiple ER visits 94%

multiple specialists 93%

feeding support 96%

respiratory support 90%

imaging 97%

genetic tests 96%

metabolic tests 96%

death 98%

metabolic ICD codes 97%

developmental delay 93%

heart surgeries 97%



Page 5 of 8Webb et al. Orphanet Journal of Rare Diseases          (2024) 19:183  

EMR databases with millions of patients, would result in 
underpowered studies given the low frequency of indi-
vidual rare genetic disorders.

In this study, we developed a novel, rule-based digital 
phenotyping algorithm (PheIndex) that utilizes 13 crite-
ria to derive a PheIndex Score for children from birth to 
3 years of age, in order to classify whether a child is pre-
senting with an illness that may be a rare genetic disorder. 
Importantly, our score is an evaluation of overall health 
rather than the presence of specific features of individual 
diseases. To our knowledge, such an approach has not 
been developed previously. The criteria for the PheIndex 
Score include items that could be extracted from the EMR 
with a high degree of precision and accuracy. Our PheIn-
dex Score may be utilized for various purposes, including 
its use as a clinical guide to shorten the diagnostic odys-
sey of hard-to-diagnose patients, timely administration 
of therapeutics by facilitating more rapid diagnosis, and/
or assessing clinical benefit of genetic testing, all of which 
help enable the practice of precision medicine in a way 
that may be more accessible to all. Chart review from 
clinical genetics experts, confirmed that our PheIndex 
algorithm has the following performance characteristics 
when the numbers of cases and controls are equal: preci-
sion of 97%, recall of 90%, and accuracy of 94%.

Limitations
While our study population is likely representative of 
other large, diverse metropolitan areas, it may be less 
representative of smaller-sized cities and rural areas. 
While we provided an adjusted PPV of 48% based on an 
estimated prevalence of rare genetic disorders in the gen-
eral population, precise estimates of rare genetic disor-
der prevalence are unavailable, and may also not reflect 
the PPV for the target population of our algorithm (i.e. 
children aged 0–3) due to differences in age of onset [11]. 
Another potential limitation of our study is that we used 
only de-identified data available in structured EMR data-
bases, and thus did not include all the information that 
would be available to physicians, such as clinical notes 
and results of genetic testing. However, despite not hav-
ing access to all available medical records, our digital 
phenotype agreed with physician chart review 94% of 

the time (under conditions in which the number of cases 
and controls were sampled to be the same), proving that 
our algorithm successfully identifies children with an 
increased risk for genetic disorders. In the few occasions 
where there were discrepancies, this was typically due 
to incomplete documentation of orders, such as respira-
tory support and feeding support in PheIndex negative 
children that was uncovered in the notes during chart 
review. The accuracy of the prolonged NICU stay rule 
was likely lower than other criterion because an indica-
tor for NICU was not available in the de-identified data-
set, and had to be derived by whether an ICU encounter 
had occurred within a 7-day timeframe from the date of 
delivery of a child. We also observed that transfers into 
the NICU were better captured in clinical notes than in 
the structured data. Nonetheless, the accuracy was still 
high at 81%, and we intend to build upon this in a future 
iteration and improvement of the algorithm using the 
PheIndex criteria extracted from notes in addition to 
structured EMR data.

Conclusions
In summary, we utilized a comprehensive EMR to 
develop a novel digital phenotyping algorithm for iden-
tification of a pediatric population with a definitive or 
possible genetic disorder. Our method utilizes a global 
approach as opposed to identifying patients in the EMR 
with each specific genetic disorder, which is fraught with 
misdiagnoses and error. We believe that our PheIndex 
algorithm will address an unmet need to identify children 
with rare genetic disorders and potentially help over-
come well-known obstacles such as underdiagnosis and 
delayed diagnosis [17].

Methods
Construction of mother–child cohort
We obtained de-identified EMR data through June 30, 
2020 from the Mount Sinai Health System (MSHS). The 
newborns in this cohort were born from 2007 to 2019, 
ensuring that all newborns had at minimum one year 
of follow-up. To accurately ascertain the gestational age 
at birth and determine the term status of a newborn, a 
mother’s EMR had to be linked. In other words, we 

Table 3 Performance of PheIndex classification against chart review

PheIndex Classification Clinical geneticist classification

Does not have genetic disease Definitively or possibly has genetic 
disease

Unknown (insufficient 
information)

Total

Negative 91 (True Negative) 9 (False Negative) 0 100

Positive 3 (False positive) 85 (True Positive) 12 100

Total 94 94 12 200
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identified the mother–child pairs, where we obtained 
mothers’ delivery records for pregnant women who 
delivered in the MSHS and linked their corresponding 
newborn with the pregnancy and delivery journey. In 
total, we identified 93,154 mother–child pairs delivered 
at MSHS hospitals, covering 68,893 mothers and 93,154 
children [18–20]. Moreover, for the children, we obtained 
gestational age and all diagnoses, procedures, vital 
signs, laboratory tests, and medications available in the 
EMR from birth until any subsequent hospital encoun-
ters of any type up to three years of age. This study was 
approved by the Mount Sinai institutional review board 
(IRB): IRB-20–01771.

Digital phenotyping algorithm for rare genetic disorders
The general criteria underlying the PheIndex (Phenotype 
Index) digital phenotyping algorithm were established 
by a clinical geneticist to target children with possible 
genetic disease based on characteristics often observed 
in this population. This includes multi-system disease, 
increased utilization of health care services, more pro-
nounced support, and detailed work-up with laboratory 
tests and imaging. Therefore, the algorithm comprises 
criteria primarily based on hospital encounters, proce-
dures, specialist visits, and laboratory test orders. Orders 
that were subsequently cancelled were not considered. 
Diagnostic codes of feeding support, developmental 
delay, and metabolic disease (see Supplemental Table 
S2A-C), and death, were also used and chosen based 
on review of a complete list of ICD ontology. A total 
of thirteen criteria were derived for the algorithm and 
their description with the associated scores are listed in 
Table  4. The clinical geneticist received informal input 
from multiple clinical geneticists and genetic counse-
lors when developing the criteria. Four criteria take into 
account term status (pre-term or full-term) given that it 
is expected that pre-term births have higher healthcare 
utilization on average compared to full-term births.

The cut-offs and scores for PheIndex were chosen and 
calibrated to mimic commonly observed healthcare uti-
lization patterns among children presenting with illness 
with an increased risk for genetic disorders. Specifically, 
the distribution for various cutoffs per criterion was cal-
culated, and the most reasonable cutoff was chosen based 
on the distribution in the population with reference to 
clinical relevance in identifying children with rare genetic 
disorders (see Supplemental Table S3A-D). Based on the 
severity of illness reflected by each rule, we classified 5 
out of these 13 criteria as “major” and the remaining 8 
as “minor”, as well as a score for each criterion scaled 
from 1 to 3, to account for the severity of illness in a clini-
cal setting. A score of 3 indicates a criterion correlating 
with more severe illness, whereas a score of 1 reflects 

less severe illness. PheIndex combines these criteria in 
two different ways: (1) “PheIndex Score”, a score indicat-
ing the severity of illness with a possible range between 
0 and 24 generated by the sum of the score(s) associated 
with the criteria met by a child; and (2) “PheIndex Clas-
sification”, a binary classification of those who present 
with illness with an increased risk for genetic disorders 
(PheIndex Classification positive) if the following con-
ditions are met: (a) ≥2 major criteria, (b) ≥1 major cri-
teria and ≥1 minor criteria, (c) ≥5 minor criteria, or (d) 
deceased patient; or those who do not present illness 
with increased risk for genetic disorders (PheIndex Clas-
sification negative).

Chart review verification of the PheIndex digital 
phenotyping
To assess the accuracy of our PheIndex digital phenotyp-
ing algorithm, manual chart review was conducted in a 
blinded fashion for the validation of the 13 criteria listed 
in Table 4. Since we used structured, deidentified data for 
developing the digital phenotyping algorithm, full clinical 
information may not be present, particularly for specific 
clinical features noted in free text format in clinical notes. 
Therefore, blinded chart review by physicians is neces-
sary. In the chart review process, a pediatrician examined 
all the clinical data for each patient including medical 
history such as birth history; all encounters including 
corresponding notes for outpatient, emergency depart-
ment, and inpatient care; lab orders; imaging studies; and 
death records within the hospital medical records system 
to ascertain the presence of clinical criteria that com-
prise our PheIndex digital phenotyping. We selected 200 
charts consisting of children who were PheIndex Clas-
sification positive (N = 100) and PheIndex Classification 
negative (N = 100). We ensured that the 100 children who 
were negative covered scores from 0 to 6 (inclusive), and 
from 3 to 21 for 100 children who were positive, based 
on the distribution of the PheIndex Score (see Fig. 1D in 
main text). Available records for this review were from 
encounters dated 01/01/2005 to 06/30/2020. All criteria 
determinations were based on available medical records 
up until three years of age. Chart selection covered each 
rule that we used to identify the phenotype to ensure 
representation including gestational age, NICU stay, 
emergency room visits, hospitalizations and duration of 
hospitalizations, subspecialty visits/consultations, pres-
ence of gastrostomy tube, presence of tracheostomy tube 
or utilization of mechanical ventilation in the absence of 
surgery, CT or MRI imaging studies, metabolic testing, 
genetic testing, metabolic disease diagnosis, develop-
mental delay, prior cardiac surgery, and death.

The review by the pediatrician had two steps: 1) vali-
date the accuracy of the values assigned to each of the 



Page 7 of 8Webb et al. Orphanet Journal of Rare Diseases          (2024) 19:183  

13 criteria for each patient; and 2) summarize diagnostic 
information from the patient charts. The pediatrician had 
access to additional delivery notes, progress notes, admis-
sion/discharge summaries, and imaging notes. Informa-
tion on diagnoses available in the notes documented by 
the pediatrician was then used by a clinical geneticist to 
decide whether the child presented with illness with an 
increased risk for genetic disorders. The possible catego-
ries of determination were: 1) “Definitively/possibly has 
genetic disorder diagnosis”, 2) “Does not have a genetic 
disorder”, 3) “Unknown, insufficient information to make 

determination on whether a genetic disorder was related 
with illness.” Both definitively has a genetic disorder 
diagnosis and possibly has one were grouped together as 
‘definitively’ included children with a positive test report, 
while ‘possibly’ included children who have not yet 
undergone genetic testing or lack definitive confirmation 
through such testing.

Statistical analysis
We note that hospital utilization patterns are known 
to vary between pre-term and full-term infants, since 

Table 4 Description and scoring for the 13 PheIndex criteria

Description Scoring

Prolonged stay in the neonatal intensive care unit (NICU) for term babies. Full-term newborns who were admitted to the NICU and stayed 
for ≥ 4 days

Major; score = 3

Prolonged or multiple hospitalizations after discharged from birth. Hospitalization is defined as an inpatient stay with a duration ≥ 48 h. 
We included hospital stays where the calculated gestational age is older than 35 weeks and exclude the first newborn encounter 
if earlier than 35-week gestation. To meet this criterion, the patient must have either at least one prolonged hospitalization (≥ 14 days) 
or at least two hospitalizations (≥ 48 h duration) for full-term or ≥ 3 hospitalizations (≥ 48 h) for pre-term babies

Major; score = 3

Visits or consults with multiple specialists other than general pediatricians
Twenty types of specialists were considered: Medical Genetics, Neurosurgery, Pediatric Allergy and Immunology, Pediatric Cardiology, 
Pediatric Dermatology, Pediatric Endocrinology, Pediatric GI/Pediatric Liver, Pediatric Hematology/Oncology, Pediatric Nephrology, 
Pediatric Neurology, Pediatric Ophthalmology, Pediatric Orthopedics, Pediatric Otolaryngology, Pediatric Pulmonology, Pediatric 
Rheumatology, Pediatric Surgery, Pediatric Urology, Transplant, Plastic Surgery. We counted the types of specialists each patient visited 
or consulted with and not the number of individual specialist visits. Preterm babies with ≥ 4 types of specialists or full-term babies 
with ≥ 3 types of specialists meet this criterion. We excluded Pediatric Infectious Disease specialty visits as infections in general are 
primarily due to environmental and non-genetic etiologies, and our aim was to identify a patient population enriched for children 
with genetic disorders

Minor; score = 1

Multiple emergency room (ER) visits
Full-term babies with ≥ 5 ER visits or preterm babies with ≥ 7 ER visits meet this criterion

Minor; score = 1

Feeding support (Gastrostomy tube)
Patients who required feeding support were identified using ICD codes (Supplemental Table 2A) and procedures with description 
of “nasogastric”, “gastrostomy” and “feed”, or “gastrostomy” and “tube” in the procedure name

Minor; score = 2

Respiratory support (tracheostomy and mechanical ventilation outside of surgery)
We used tracheostomy and ventilation (including CPAP) identified by procedure codes and diagnosis codes. If a surgical procedure 
was performed, the ventilatory support was required to be performed either 1 day before or 5 days after surgeries to be able to meet 
this criterion

Minor; score = 2

Imaging
We included patients that received computed tomography (CT) or magnetic resonance imaging (MRI) with completed encounter 
order status or preliminary/final results available from radiological exams

Minor; score = 1

Genetic diagnostic tests
We included patients who received genetic diagnostic tests such as gene sequencing or array comparative genomic hybridization 
regardless of test results. The records of genetic diagnostic tests were retrieved from procedure codes and labs

Minor; score = 1

Metabolic diagnostic tests
We included patients who received metabolic tests such as a plasma amino acids panel or a urine organic acids panel, regardless 
of test results. The records of metabolic diagnostic tests were retrieved from procedure codes and labs

Minor; score = 1

In-hospital death
Death information was retrieved from discharge location/disposition (expired, to funeral home/morgue or organ harvest) 
from encounter records

Major; score = 3

Developmental delay
Patients with developmental delay were identified by either a specialist visit with a developmental pediatrician or at least two occur-
rences of related ICD codes (Supplemental Table 2B)

Minor; score = 1

Diagnosis codes corresponding to metabolic diseases with ≥ 2 encounters
We included patients with ICD codes for metabolic diseases (Supplemental Table 2C)

Major; score = 3

Heart surgeries
Newborns that received heart surgeries were identified by encounters related to cardiothoracic surgeries or cardiothoracic intensive 
care unit (CTICU)

Major; score = 3
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pre-term infants often have more clinical needs and pro-
longed NICU stays. To assess this, for each group we 
computed the similarity between all pairs of PheIndex 
criteria using the Jaccard index: 13 for full-term and 12 
for pre-term newborns (prolonged NICU stay was not 
a included as a criterion as pre-term newborns stay in 
NICU for being pre-term and not necessarily related to 
a rare disorder diagnosis). We described continuous vari-
ables as their median and quantile range, and categori-
cal variables as a number and percentage. We performed 
statistical tests by ANOVA or two sample t-test for con-
tinuous variables and Chi-square test for categorical vari-
ables, respectively.

We performed all analyses using R (version 3.6.1) and 
Python (version 3.7). We considered p < 0.05 as statisti-
cally significant.
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