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Abstract

Background: Autosomal recessive hereditary spastic paraplegia (HSP) due to AP4M1 mutations is a very rare
neurodevelopmental disorder reported for only a few patients.

Methods: We investigated a Greek HSP family using whole exome sequencing (WES).

Results: A novel AP4M1A frameshift insertion, and a very rare missense variant were identified in all three affected
siblings in the compound heterozygous state (p.V174fs and p.C319R); the unaffected parents were carriers of only
one variant. Patients were affected with a combination of: (a) febrile seizures with onset in the first year of life
(followed by epileptic non-febrile seizures); (b) distinctive facial appearance (e.g., coarse features, bulbous nose and
hypomimia); (c) developmental delay and intellectual disability; (d) early-onset spastic weakness of the lower limbs;
and (e) cerebellar hypoplasia/atrophy on brain MRI.

Conclusions: We review genotype-phenotype correlations and discuss clinical overlaps between different AP4-related
diseases. The AP4M1 belongs to a complex that mediates vesicle trafficking of glutamate receptors, being likely
involved in brain development and neurotransmission.
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Background
Clinically and genetically heterogeneous neurological
disorders constitute huge challenges for clinicians and
geneticists as the number of genes associated with a
wide range of overlapping phenotypes is constantly
increasing. For the molecular diagnosis of these
disorders gene-by-gene screens are progressively being
replaced by more time and cost effective next gener-
ation sequencing approaches (candidate gene panels
or whole-exome sequencing) [1, 2]. Hereditary spastic
paraplegias (HSPs) are an example of such a hetero-
geneous group of disorders, for which more than 70
loci have already been mapped and yet the landscape

of HSP loci and genes is far from complete [3]. HSPs are
characterized by progressive spasticity and weakness of
the lower limbs due to corticospinal tract dysfunction.
HSPs are broadly classified as uncomplicated or compli-
cated on the basis of the presence of additional clinical
features such as intellectual disability, seizures, ataxia, per-
ipheral neuropathy and visual defects [4].
HSP-associated genes are involved in a wide variety

of primary molecular functions, resulting for example
in disturbances in vesicle formation and membrane
trafficking including selective uptake of proteins into
vesicles when such genes are mutated [4]. This is the
case for the subunits of the heterotetrameric adaptor
protein complex 4 (AP-4). AP-4 is composed of two
large chains beta-4 (AP4B1; MIM#607245) and
epsilon-4 (AP4E1; MIM#607244), a medium mu-4
chain (AP4M1; MIM#602296), and a small sigma-4
chain (AP4S1; MIM#607243).
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AP-4 complex-mediated trafficking is thought to
play a crucial role in brain development and function-
ing. All genes encoding for the proteins part of this
complex have been associated with genetic forms of
HSP (e.g. AP4B1 [SPG47], AP4M1 [SPG50], AP4E1
[SPG51], and AP4S1 [SPG52]) [4, 5]. We hereby re-
port on a Greek family with SPG50 (MIM#612936)
caused by two heterozygous AP4M1 variants in a
compound heterozygous state. We also discuss on the

genotype-phenotype correlations and the spectrum of
AP4-related diseases.

Methods
Subjects
We have studied a Greek family (Fig. 1) composed of
three affected siblings born to healthy parents, who
presented with complicated HSP. History of previous
neurological disease was unremarkable in the family

Fig. 1 The three siblings affected by complicated HSP due to AP4M1 compound heterozygous mutation. a Note facial coarse features, convergent
bilateral strabismus, prominent and bulbous nose, and wide mouth in all the three siblings; (b) In the left panel familial pedigree (the asterisks specify the
sequenced individuals with the arrow pointing to the proband) with black and white symbols indicating affected and unaffected individuals, respectively;
in the right panel electropherograms illustrating the AP4M1 variants identified in our family; (c) A schematic representation of the AP4M1 gene and protein
depicting the location of the mutations found in our family (in red) and those previously reported in the literature (in black) for this gene (MIM#602296),
and highlighting the MHD, which is a protein-protein interaction module. HSP = Hereditary Spastic Paraplegia. MHD = mu homology domain
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and the pedigree suggested an autosomal recessive in-
heritance. Thorough neurological examination and
follow-up were carried out at the Departments of
Neurology of the AHEPA Hospital and Papageorgiou
Hospital by some of the authors (GX, TK, GD, MS,
TB and HH). This study was approved by the UCLH
institutional-research-board. After informed consent,
we collected blood samples from the patients and
their parents, and extracted DNA using standard pro-
cedures. Additional informed consent was obtained
from all individual participants for whom identifying
information is included in this manuscript.

Genetic analysis
To investigate the genetic cause of the disease in this
family, whole-exome sequencing (WES) was per-
formed in the proband (Fig. 1b: II-3) and his father
(Fig.1b: I-1). Nextera Rapid Capture Enrichment kit
(Illumina) was used according to the manufacturer in-
structions. Libraries were sequenced in an Illumina
HiSeq3000 using a 100-bp paired-end reads protocol.
Sequence alignment to the human reference genome
(UCSC hg19), and variants call and annotation were
performed using an in-house pipeline as described
elsewhere [6]. The raw list of single nucleotide vari-
ants (SNVs) and indels was then filtered. Only exonic
and donor/acceptor splicing variants were considered.
In accordance with the pedigree and phenotype, pri-
ority was given to rare variants [<1% in public data-
bases, including 1000 Genomes project, NHLBI
Exome Variant Server, Complete Genomics 69, and
Exome Aggregation Consortium (ExAC v0.2)] fitting a
recessive model (i.e. homozygous in the proband but
heterozygous in the father or compound heterozygous
in the proband but not in the father), and located in
genes previously associated with HSP [3, 7].
The AP4M1A mutations (in exons 6 and 12) identi-

fied by WES in the proband were confirmed by trad-
itional Sanger sequencing and also segregation
analysis of the mutation in the family was performed.
Detailed conditions of sequencing analysis are avail-
able upon request.

Results
Clinico-radiological phenotype
The three affected siblings (Fig. 1b: II-1, II-2 and II-3)
have a phenotype consisting of complicated HSP. All of
them showed early-onset and severe spastic lower limb
weakness, brisk deep tendon reflexes, presence of
Babinski sign and severe gait difficulties. The older male
and the female (Fig. 1b: II-1 and II-2, respectively) need
assistance to stand up. Only the younger male (Fig. 1b:
II-3) is able to stand up independently and walk a few
steps unassisted. The gait is characterized by feet

dragging, shaking and leg scissoring. All three siblings
have upper limbs weakness, more obvious in the prox-
imal muscle groups, especially for the two older siblings.
The facial muscles are hypotonic with reduced facial
expressions. The facial appearance of the three siblings
is characterized by coarse features, a prominent and bulb-
ous nose and a wide mouth (Fig. 1a; left panel patient II-1,
middle panel patient II-3, right panel patient II-2).
Interestingly, all affected siblings present hypometric

and slow vertical saccades, especially at the upward gaze.
Some limb ataxia is also present. There are no promin-
ent extrapyramidal signs.
All three siblings have severe intellectual disability.

Additional cognitive/behavioral abnormalities include
apathy, reduced motor planning and/or initiation,
attention-deficit disorder. An impairment of speech is
also present, especially for the older male who has very
poor language skills.
All siblings were born without any adverse perinatal

events and had normal development during the first
months of their lives. All three presented febrile
tonic-clonic seizures during the first year of life,
which were soon followed by epileptic non-febrile
seizures. Developmental delay was noticed since early
infancy. Only the younger brother (Fig. 1b; patient
II-3) managed to walk independently during child-
hood but later his motor skills also started to grad-
ually decline. The language and social skills of all
three siblings were also lagging behind during their
childhood and eventually showing some serious defi-
cits by their puberty.
Spastic Paraplegia Rating Scale (SPRS) [8] was assessed

for all 3 siblings: the older male and the female (Fig. 1b:
II-1 and II-2, respectively) both scored 40 out of a max-
imum of 52, while the younger male (Fig. 1b: II-3)
scored 35/52.
Other disorders presenting with spastic paraparesis

(e.g. abetalipoproteinemia, funicular myelosis, mul-
tiple sclerosis, AIDS, lues, adrenoleucodystrophy,
etc.) were excluded after an extensive diagnostic
work-up that included brain magnetic resonance im-
aging (MRI), cerebrospinal fluid (CSF) analysis, nerve
conduction and evoked potentials studies, electro-
myography (EMG), electroencephalography (EEG),
serum vitamin B12 and E levels, serum arylsulpha-
tase, galactocerebrosidase and very long chain fatty
acids (VLCFA) levels, HTLV-1 antibodies, HIV and
syphilis serology.
The brain MRI showed cerebellar hypoplasia/atro-

phy and downsloping splenium of the corpus callo-
sum (Fig. 2).
Nerve conduction studies showed no evidence of per-

ipheral neuropathy. Somatosensory evoked potentials
(SSEPs) of median and tibial nerve were remarkable for
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prolongation of cortical latencies (N13-N20 and P40,
respectively).
EEG was reported normal for the three siblings,

without findings of focal slowing or seizure-like activ-
ity. More specifically, EEG recordings showed back-
ground of 9 to 10 hertz alpha activity, maximal over
the posterior head region. These activities were
symmetric on both sides and attenuated with eye
opening. No focal slowing was seen and no seizure-
like activity was observed during the recording.
Patient entered into periods of drowsiness and light
sleep. No abnormality was seen.
All clinical and radiological features are summarized

in Table 1, and compared to other cases of HSP due to
AP4M1 mutations previously reported in literature.

Sequence analysis
WES generated a total of 136,968,572 (proband, Fig. 1b:
II-3) and 145,150,172 (father, Fig. 1b: I-1) unique reads,
with an average on target depth over 160 reads, and
>98% of the target bases covered at least 10X. A total of
24,872 (proband) and 25,228 (father) exonic/splicing var-
iants were detected. After applying our filtering strategy
described above, we identified two heterozygous AP4M1
(SPG50) variants in the proband, a novel frameshift in-
sertion (c.521dupT; p.V174fs in exon 6), and a very rare

(<2.5 × 10−5 in public databases) missense variant
(c.955 T > C; p.C319R in exon 12). Only one of these
variants was present in the father (c.955 T > C;
p.C319R). No other rare homozygous or compound het-
erozygous variants were found in genes of relevance for
the phenotype, including all know HSP genes. The
AP4M1frameshift variant causes a very premature stop
codon, truncating the protein (if expressed at all) to 179
amino acids (wild-type: 453 amino acids), just before the
mu homology domain (MHD) which is an essential
protein-protein interaction module (Fig. 1c). The mis-
sense variant lays on a highly conserved position (GERP
++ score [9] of 4.75) of the MHD domain, and is
predicted to be damaging by several prediction tools (in-
cluding SIFT [10], PolyPhen2 [11], and MutationTaster
[12]). Segregation analysis by Sanger sequencing showed
that all three affected siblings have both variants,
whereas the father carries only the missense and the
mother carries only the frameshift (Fig. 1b), confirming
that the compound heterozygous state of these variants
is segregating with the phenotype.

Discussion
Very few patients and families have been described in
the literature with mutations in the AP4M1 gene. The
reported phenotype is mainly characterized by the

Fig. 2 Brain MRI of the three affected siblings. a T2-weighted coronal scan of the older male patient (Fig. 1b: II-1) demonstrates cerebellar hypoplasia/
atrophy with the impression of a cleft in the lateral cerebellar hemisphere. Note that the brainstem volume is preserved; (b, c, d) T1-weighted sagittal
scans with contrast of all three siblings (Fig. 1b: II-1, II-2 and II-3, respectively) show slight hypoplasia/atrophy of the cerebellar vermis. Also, there is
downsloping splenium of the corpus callosum

Bettencourt et al. Orphanet Journal of Rare Diseases  (2017) 12:172 Page 4 of 7



Ta
b
le

1
Su
m
m
ar
y
of

cl
in
ic
al
an
d
ra
di
ol
og

ic
al
fe
at
ur
es

of
pa
tie
nt
s
w
ith

AP
4M

1
m
ut
at
io
ns

Pr
es
en

t
st
ud

y
Τü
ys
üz

et
al
.,
20
14

[5
]

Ve
rk
er
k
et

al
.,
20
09

[1
3]

Ja
m
ee
le
t
al
.,
20
14

[1
4]

La
ng

ou
et

et
al
.,
20
15

[1
5]

Et
hn

ic
Ba
ck
gr
ou

nd
G
re
ek

Tu
rk
is
h

Tu
rk
is
h

M
or
oc
ca
n

Pa
ki
st
an
i

A
lg
er
ia
n

Pe
di
gr
ee

2
M
/1
F

2F
1
M
/1
F

3M
/2
F

2M
1
M
/1
F

In
te
lle
ct
ua
ld

is
ab
ili
ty

Se
ve
re

Se
ve
re

M
od

er
at
e
to

se
ve
re

Se
ve
re

Se
ve
re

Se
ve
re

Sp
ee
ch

im
pa
irm

en
t

+
+

+
+

+
+

Ps
eu
do

bu
lb
ar

si
gn

s
(e
.g
.s
te
re
ot
yp
ic
al
la
ug

ht
er
)

–
+

+
+

–
+
/−

In
fa
nt
ile

hy
po

to
ni
a

N
A

N
A

+
+

+
+

Se
iz
ur
es

+
+

+
–

+
/−

+
/−

Sp
as
tic

te
tr
ap
le
gi
a

+
+

+
+

–
+

H
yp
er
to
ni
a

+
+

+
+

+
+

H
yp
er
re
fle
xi
a

+
N
A

N
A

N
A

+
+

Ba
bi
ns
ki
si
gn

+
N
A

N
A

+
+

+

Lo
ss

of
am

bu
la
tio

n
+

+
+

+
+

+

A
ta
xi
a

+
N
A

N
A

–
N
A

N
A

Sl
ow

/h
yp
om

et
ric

sa
cc
ad
es

+
N
A

N
A

N
A

N
A

N
A

Fa
ci
al
hy
po

to
ni
a

+
+

+
N
A

–
N
A

C
oa
rs
e
fa
ci
al
fe
at
ur
es

(e
.g
.b

ul
bo

us
no

se
)

+
+

+
N
A

+
/−

–

M
RI

fe
at
ur
es

Ve
nt
ric
ul
om

eg
al
y

–
+

+
+

+
+

Th
in

sp
le
ni
um

+
+

+
+

+
+

W
hi
te

m
at
te
r
ab
no

rm
al
iti
es

–
–

+
+

–
+

C
er
eb

el
la
r
at
ro
ph

y
+

–
–

+
+

–

M
ut
at
io
n

c.
52
1d

up
T/
c.
95
5
T
>
C

c.
10
12
C
>
T

c.
95
2C

>
T

c.
11
37

+
1G

>
T

c.
19
4_
19
5d

el
A
T

c.
11
37

+
1G

>
T

M
M
al
e,

F
Fe
m
al
e,

N
A
N
ot

av
ai
la
bl
e;

+
:P

re
se
nt
;−

:A
bs
en

t;
+
/−
:P

re
se
nt

on
ly
in

so
m
e
m
em

be
rs

of
th
e
fa
m
ily

Bettencourt et al. Orphanet Journal of Rare Diseases  (2017) 12:172 Page 5 of 7



combination of infantile hypotonia, developmental
delay, intellectual disability, early-onset spastic para-
plegia, and variable white matter and cerebellar in-
volvement on brain MRI; only four pathogenic
AP4M1 mutations (Fig.1c) have been reported to date
in SPG50 patients [5, 13–17].
Our pedigree is compatible with an autosomal re-

cessive complicated spastic paraplegia, and the two
variants we identified in the AP4M1 gene, segregating
with the phenotype, are very likely the cause of the
phenotype in this family. Copy number variants
(CNVs) involving the AP4M1 gene have also been
implicated in developmental disabilities or congenital
anomalies [18, 19]. The AP4M1 gene is highly
expressed in the brain especially during foetal
development (see Additional file 1: Figure S1), and
disruption of its function compromises proper brain
development and likely impairs neuronal excitability.
Notably, patients with biallelic loss-of-function mu-

tations of AP4M1 have been initially reported with a
phenotype presenting at birth with severe infantile
hypotonia and diffuse white matter loss on brain
MRI. For this reason it has been postulated that the
genetic defect in these patients results in abnormal
cycling of glutamate receptors, mimicking glutamate-
mediated perinatal white matter injury [13]. Interestingly,
the affected siblings from our family showed a milder
presentation, with normal muscular tone during their in-
fancy and no white matter involvement on their brain
MRI, similarly to the other few patients reported with re-
cessive missense mutations in AP4M1 [5]. It is therefore
possible that in our cases the missense mutation inherited
on the paternal allele resulted in a milder phenotype be-
cause of a residual function of the gene, compared to the
most severe cases where homozygous splicing mutations
have been identified as the cause of the disorder [13].
Interestingly, the earliest manifestation in the natural

history of the disease in our patients were tonic-clonic
seizures (precipitated by fever), which appeared since
the first months after birth. Of note, febrile seizures with
onset in the first year of life represent common features
of AP4B1 deficiency, an overlapping (autosomal reces-
sive) HSP phenotype (SPG47; MIM#614066) caused by
mutations in the gene encoding the large b4 chain of the
AP-4 complex [20].
It has been shown that the loss or structural change of

a single AP-4 subunit impairs the integrity of the entire
AP-4 complex [21]. Consequently, mutations in any of
the AP-4 subunits would presumably have similar down-
stream effects on vesicular glutamate receptor transport
and neurotransmission, resulting in similar clinical pre-
sentations (e.g., altered neuronal excitability and risk of
developing infantile febrile seizures in both AP4B1- and
AP4M1-related phenotypes). These observations are

further corroborated by the few patients reported with
recessive missense mutations in AP4M1, who also pre-
sented seizures (precipitated by fever) during their first
year of life [5].

Conclusions
We reported on genotype-phenotype correlations in
SPG50, basing on a Greek family with three affected indi-
viduals and the few previously reported patients, and also
expanded the molecular spectrum associated with this
phenotype. Further studies will be needed to investigate
the role of AP-4 in brain development and neurotransmis-
sion and to fully understand the pathophysiology of child-
hood epilepsy in these patients.

Additional file

Additional file 1: FigureS1. Expression of the AP4M1 gene in several
regions of the human brain throughout development and aging. Note
the higher expression levels during fetal development (birth is marked
with a vertical solid line). Data from the Human Brain Transcriptome
(HBT) project (http://hbatlas.org). CBC - cerebellar cortex, MD -
mediodorsal nucleus of the thalamus, STR - striatum, AMY - amygdala,
HIP - hippocampus, and NCX – neocortex. (PDF 68 kb)
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