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Abstract

Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically
characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs,
ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients
develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six
subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes
are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary
between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by
specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused
by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat
expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene
mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is
mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and
non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which
reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is
supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of
recent studies have highlighted novel therapies, which bring hope for future curative treatments.
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Disease name/synonyms
Autosomal dominant cerebellar ataxias, spinocerebellar
ataxias.
Definition
Autosomal dominant cerebellar ataxias (ADCA) are her-
editary neurodegenerative disorders. A number of disease
entities present with the ADCA phenotype, such as spino-
cerebellar ataxias (SCA), dentatorubral-pallidoluysian at-
rophy, episodic ataxia, and autosomal dominant spastic
ataxia. Harding proposed the classification of ADCA into
Type I, Type II, and Type III, based on clinical phenotypes
in the pre-genetic era [1]. Patients of ADCAType I exhibit
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both cerebellar and non-cerebellar signs. ADCA Type I
includes SCA1 - SCA4, SCA8, SCA10, SCA12 - SCA23,
SCA25, SCA27, SCA28, and SCA32 - SCA36. We have
recently reviewed the ADCA Type I in this journal [2].
ADCA Type II comprises syndromes associated with pig-
mentary maculopathies and includes SCA7. ADCA Type
III comprises mostly pure cerebellar syndromes and
includes SCA5, SCA6, SCA11, SCA26, SCA30, and
SCA31. As an increasing number of cases carrying genes
associated with ADCA type III were reported, it has been
noted that a small subset of patients of ADCA type III can
present with non-cerebellar signs including mild neur-
opathy, pyramidal signs, or parkinsonism. However, this
pre-genetic era classification of ADCA is still important,
as it has a prognostic implication. The ADCA Type III
patients usually have better prognosis in contrast to
ADCA Type I patients. Additionally, this classification
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ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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allows physicians to more frequently and precisely diag-
nose patients and save the cost of genetic testing. Table 1
summarizes current status of molecular genetic data for
each type of ADCA.
This review focuses on ADCA Type III. ADCA Type

III currently is comprised of a group of six disorders.

Clinical description
ADCA Type III, as a group, is a relatively benign and
slowly progressing set of disorders. It is clinically charac-
terized by mostly pure cerebellar signs including gait,
stance, and limb ataxia as well as dysarthria. Affected sub-
jects present with cerebellar oculomotor dysfunction, such
as nystagmus and impaired smooth pursuit. The charac-
teristics of oculomotor dysfunctions may vary between
each subtype. Non-cerebellar signs including pyramidal
features, peripheral neuropathy, involuntary movements,
and others, are occasionally seen in ADCA Type III. We
discuss the clinical phenotype of each subtype below.

Epidemiology
The prevalence of ADCA Type III is unknown; however,
studies have estimated that the incidence may be vari-
able based upon geographical location/population. There
were estimated to be three ADCA cases per 100,000
people in the Netherlands [3], and 4.2 ADCA cases per
100,000 people in Norway [4].
SCA6 is the most common subtype of ADCA Type III.

Additionally, SCA6 is one of the most common subtypes
of all three types of ADCA, accounting for approximately
13% of all cases[5]. The prevalence of SCA6 is estimated
to be less than one per 100,000. SCA6 is commonly seen
in Japan (6-32%) [6-11], Korea (15-23%) [12,13], the
Netherlands (11-23%) [14,15], Germany (10-22%) [16-18],
and less commonly observed in UK (5%) [19], India
(0-4%) [20,21], China (0-3%) [22,23], South Africa (2%)
[24], Thailand (2%) [25], Italy (1-2%) [26,27], France (1%)
[28], Finland (1%) [29], and Spain (1%) [30]. No cases of
SCA6 have been reported in Portugal [31,32]. SCA31 is
the second most common ADCA subtype and is mainly
seen in Japan (9%) [33]. The prevalence of SCA5, SCA11,
SCA26, and SCA30 are reported to be relatively rare.
Founder effects have likely contributed to the variable
prevalence between populations. The variation in number
of normal triplet repeats in populations, as also observed
in other triplet repeat disorders such as Huntington dis-
ease, may influence the variability of prevalence between
populations. Epidemiological features of ADCA Type III
are summarized in Table 2.

Molecular genetics and etiology
The pathogenesis of the ADCA Type III is not fully
understood. There are currently four causative genes,
which have been identified to have an association with
ADCA Type III. Conventional mutations in the spectrin,
beta, non-erythrocytic 2 (SPTBN2) gene for SCA5, poly-
glutamine expansion in the calcium channel, voltage-
dependent, P/Q type, alpha 1A subunit (CACNA1A)
gene for SCA6, conventional mutations in the tau tubu-
lin kinase-2 (TTBK2) gene for SCA11, and non-coding
expansions in the brain expressed, associated with
NEDD4 (BEAN) gene for SCA31. These can all cause
ADCA Type III. In addition, two loci have been discov-
ered for the other subforms, SCA26 and SCA30. We will
discuss the molecular genetics and etiology of each sub-
form later in the text.

Diagnosis and differential diagnosis
There are no fully validated diagnostic criteria for ADCA
Type III or for any of the other forms of pure cerebellar
ataxias. A definitive diagnosis is based on genetic testing;
however, a clinical history, family history of similar pheno-
type, physical examination, and neuroimaging, including
head magnetic resonance imaging (MRI) are all important
in obtaining the precise diagnosis. When seeing ataxic
patients, it is crucial to discern whether they have pure
cerebellar ataxia or cerebellar ataxia plus additional non-
cerebellar symptoms. If patients manifest pure cerebellar
ataxia, then the next step is to exclude any secondary
causes such as drug side effects, toxicity, nutritional defi-
cits, infections, and structural abnormalities. It is noted
that cerebellar atrophy on MRI is an important argument
in favor of a neurodegenerative disease diagnosis such as
ADCA in contrast to a secondary cause of cerebellar
ataxia. Secondary cerebellar ataxias have been previously
discussed [2]. After alternate causes for ataxia have been
excluded, genetic testing may be conducted for a definitive
diagnosis. In Japan, SCA6 is the most common subtype of
ADCA type III, followed by SCA31. Therefore, genetic
testing for these genes should be considered first. In
Australia, Germany, Korea, the Netherlands, Taiwan, and
the USA, SCA6 is the most common or is relatively com-
mon. Therefore, genetic testing for SCA6 should be con-
sidered first. In other countries, such as China, Finland,
and France, ADCA Type III is a rare disorder or the
prevalence of ADCA Type III is unknown. It is recom-
mended that a head MRI be performed. If mild pons atro-
phy exists, genetic testing for SCA6 could be considered
first. If there is no pons atrophy, then genetic tests for
SCA5, SCA6, SCA11, and SCA31 are recommended. If
the genetic tests are negative for known ADCA Type III,
we suggest to perform genetic testing for SCA1, SCA3,
SCA4, SCA15/16 and SCA19/22. These subtypes could
present with pure cerebellar syndrome at the early stage
of illness. After excluding the mutations in these genes,
other familial forms of disorders presenting with cerebel-
lar signs should be ruled out. The strategy for diagnosis of
cerebellar ataxia is summarized in Figure 1.



Table 1 Genes and genetic loci associated with ADCA
types

Subform Gene Gene
product

Mutation Locus

ADCA Type I

SCA1 ATXN1 Ataxin 1 CAG repeat 6p22.3

SCA2 ATXN2 Ataxin 2 CAG repeat 12q24.12

SCA3 ATXN3 Ataxin 3 CAG repeat 14q32.12

SCA4 UN UN UN 16q22.1

SCA8 ATXN8OS Ataxin 8 CTG/CAG repeat 13q21.33

SCA10 ATXN 10 Ataxin 10 ATTCT repeat 22q13.31

SCA12 PPP2R2B PPP2R2B CAG repeat 5q32

SCA13 KCNC3 KCNC3 Missense 19q13.33

SCA14 PRKCG PRKCG Missense 19q13.42

SCA15/
SCA16

ITPR1 ITPR1 Missense, deletion 3p26.1

SCA17 TBP TBP CAG repeat 6q27

SCA18 UN UN UN 7q22-
q32

SCA19/
SCA22

KCND3 KCND3 Missense, deletion 1p13.2

SCA20 UN UN UN 11q12

SCA21 UN UN UN 7p21.3-
p15.1

SCA23 PDYN prodynorphin UN 20p13

SCA25 UN UN UN 2p21-
p13

SCA27 FGF14 FGF14 Missense, frameshift 13q33.1

SCA28 ATG3L2 ATG3L2 Missense 18p11.21

SCA32 UN UN UN 7q32-
q33

SCA34 UN UN UN 6p12.3-
q16.2

SCA35 TGM6 TGM6 Missense 20p13

SCA36 NOP56 NOP56 GGCCTG repeat 20p13

ADCA Type II

SCA7 ATXN7 Ataxin 7 CAG repeat 3p14.1

ADCA Type III

SCA5 SPTBN2 SPTBN2 Inframe deletion,
missense

11q13.2

SCA6 CACNA1A CACNA1A CAG repeat 19q13.2

SCA11 TTBK2 TTBK2 Stop, frameshift
insertion, frameshift
deletion

15q15.2

Table 1 Genes and genetic loci associated with ADCA
types (Continued)

SCA26 UN UN UN 19p13.3

SCA30 UN UN UN 4q34.3-
q35.1

SCA31 BEAN-TK2 BEAN TGGAA repeat 16q21

ADCA: autosomal dominant cerebellar ataxia; AFG3L2: ATPase family gene
3-like 2; ATSN8OS: ataxin 9 opposite strand; ATN: atrophin; ATXN: ataxin; BEAN:
brain expressed, associated with Nedd4; CACNA1A: calcium channel,
voltage-dependent, P/Q type, alpha 1A subunit; CBMC: cord blood-derived
mononuclear cells; EAAT4: excitatory amino acid transporter; FGF14: fibroblast
growth factor 14; ITPR1: inositol 1,4,5-triphosphate receptor 1; KCNC3:
potassium voltage-gated channel subfamily C member 3; KCND3: potassium
voltage-gated channel, shal-related subfamily, member 3; MRI: magnetic
resonance imaging; NOP56: NOP56 ribonucleoprotein homolog; PPP2R2B:
protein phosphatase 2, regulatory subunit B, beta isoform; PRKCG: protein
kinase Cγ; RNAi: RNA interference; SCA: spinocerebellar ataxia; siRNA: small
interfering RNA; SPTBN2: spectrin, beta, non-erythrocytic 2; TATA: thymine
adenosine thymine adenosine; TBP: TATA box binding protein; TGM6:
transglutaminase 6; TK2: thymidine kinase 2; TTBK2: tau tubulin kinase-2; UN:
unknown.
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Management including treatment
There is currently no cure for ADCA Type III or its sub-
types. Supportive care still remains the mainstay of man-
agement; however, a variety of different kinds of
treatments are emerging.

Supportive therapies
It is important for patients with ADCA Type III to be
involved in physical and occupational therapies from the
onset of their gait dysfunction or dysarthria. Computer
devices are useful for communication in subjects with
severe dysarthria. Mechanical aids such as a cane, walker,
or wheelchair can allow the patient to remain both mobile
and safe.

Pharmacological therapies
Several clinical trials have been conducted for potential
SCA6 therapies. Yabe and colleagues showed that aceta-
zolamide (250-500 mg/day) temporally, but significantly,
reduced the severity of ataxia in SCA6 patients [34]. A
pilot trial revealed that gabapentin (1200 mg/day) alle-
viated some of the ataxia symptoms in SCA6 [35]. An
open-label trial with tandospirone (15 mg/day) for SCA6
patients showed a reduction in the total score on the
ataxia rating scale and total length traveled by SCA6
patients [36]. In this study, the length travelled was
defined as the movement in distance per minute (m/s)
of the patient’s center of gravity as calculated by the soft-
ware incorporated in the stabilometer (Gravicorder,
Model G5500; Anima Corp, Tokyo, Japan).

Gene therapy
RNA interference (RNAi) aimed at post-transcriptional
silencing of disease causing a selective degradation of
mRNA, has attracted interest as a new emerging thera-
peutic option [37]. This novel therapy has already been



Table 2 Epidemiological findings of ADCA Type III

Subform Country Reported frequency of each ADCA subform

Common
(>20%)

Relatively
common
(5-20%)

Rare
(0<, <5%)

None
(0%)

SCA5 USA,
German,
France

- - USA,
German,
France

-

SCA6 Many Japan,
Netherland,
Korea,
German

USA,
Taiwan,
Australia

UK, India,
China,
Thailand,
Italy, France,
Finland,
Spain, South
Africa

Portugal

SCA11 England,
German,
France

- - France,
German

China

SCA26 USA - - - -

SCA30 Australia - - - -

SCA31 Japan - Japan Korea USA,
China

ADCA: autosomal dominant cerebellar ataxia; SCA: spinocerebellar ataxia; UK:
the United Kingdom; USA: the United States of America.
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applied to some neurodegenerative conditions including
polyglutamine diseases. Xia and colleagues described that
intracerebellar injection of RNAi successfully led to im-
provement of motor coordination in the mouse models of
SCA1 [38]. They also found that it restored cerebellar
morphology and resolved characteristic inclusions in the
Purkinje cells of the mouse model. Scholefield and collea-
gues showed that selective silencing of mutant Ataxin 7
caused significant reduction in the levels of the toxic mu-
tant Ataxin 7 in cells [39]. Recently, pioneering work has
been conducted that may lead to the development of
potential RNAi therapies for one of the subtypes, SCA6.
Tsou and colleagues developed a novel splice isoform-
specific-RNAi strategy that selectively targets the polyQ-
encoding Cav2.1 splice valiant [40]. They achieved the
selective suppression of the polyQ-encoding Cav2.1 splice
variants utilizing a new artificial microRNA-like delivery
system. So far, an increasing number of reports, including
these studies, have been published associated with RNAi
therapies. However, numerous problems such as selection
of potent siRNAs, the safety and efficacy of these com-
pounds, and the eventually drug delivery to tissues or
cells, remain to be elucidated before they can become
clinically available [41].

Stem cell therapy
An increasing number of studies have proven the efficacy
of stem cell therapy for animal models of a variety of
diseases, including cerebellar ataxia [42-44]; however,
stem cell therapy still has not been shown to be a proven
therapy in humans and is not recommended at this time.
Exercise
The beneficial effects of routine exercise have been
reported not only for metabolic diseases, but also neuro-
degenerative disorders such as Alzheimer’s disease
[45,46] and Parkinson’s disease [47]. Fryer and colleagues
have shown that exercise can improve motor impairment,
as well as learning and memory deficits in the ATXN-1
mouse model [48]. Ilg and colleagues reported that inten-
sive coordinative training significantly improved motor
performance and alleviated symptoms in patients with
cerebellar degeneration, including SCA6 subjects [49,50].
However, it is still unclear whether excise has an influence
on the origin of the disease directly or if it is simply sup-
portive care.

Others
Subcutaneous insulin-like growth factor-1 treatment
[51] and transglutaminase inhibitor [52,53] treatment
for ataxic disorders are being evaluated in pre-clinical
and clinical trials. However, they are not yet available
for ADCA Type III patients.

Prognosis
As a group ADCA Type III, progresses slowly and are
not life-threatening. However, there is possible intra or
inter familial variability. Having dysphagia or frequent
falls may shorten the lifespan of the patient.

Clinical description, Molecular genetics, and
etiology of each subform
Spinocerebellar Ataxia Type 5 (SCA5)
Three families, American, German, and French have been
reported [54-56]. SCA5 has age related penetrance. The
age of symptomatic disease onset is between 10 and 68
years (mean 33 years) without anticipation [54]. This
slowly progressive type of ADCA can have a disease dur-
ation of more than 30 years. SCA5 presents with cerebellar
signs and eye movement abnormalities, including down
beat nystagmus, gaze-evoked nystagmus, and impaired
smooth pursuit. Several patients manifested non-cerebellar
signs such as facial myokimia, horizontal gaze palsy,
intention or resting tremor, brisk deep tendon reflexes, and
impaired vibration sense [56,57]. Head MRI shows global
atrophy of the cerebellum without any involvement of
brainstem or any other brain regions [57].
In 1994, Ranum and colleagues mapped the locus on

chromosome 11 by linkage analysis in a large American
family affected by dominant ataxia [54]. In 2004, Bürk and
colleagues narrowed the SCA5 locus to a 5.15-Mb interval
on chromosome 11q13 [56]. In 2006, Ikeda and colleagues
discovered the SPTBN2 mutations, encoding β-III spec-
trin, in the original American kindred and two additional
kindreds [58]. To date, two in-frame deletions and one
missense mutation have been confirmed as pathogenic



Cerebellar ataxia with autosomal dominant inheritance
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Figure 1 This flowchart explains diagnostic algorithm for ADCA Type III. After excluding the cases presenting with cerebellar signs plus
non-cerebellar features and secondary cerebellar ataxias, we suggest the appropriate genetic testing based on geographic distribution (patient’s
country of origin). If the genetic tests are negative for known ADCA Type III gene mutations, we suggest to perform genetic testing for subtypes
of ADCA Type I, which could possibly present with pure cerebellar syndrome at the early stage of illness. After excluding these diseases, other
familial forms of disorders presenting with cerebellar signs should be considered. ADCA: autosomal dominant cerebellar ataxia; MRI: magnetic
resonance imaging; SCA: spinocerebellar ataxia; USA: the United States of America.
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mutations [58]. β-III spectrin consists of 2390 amino acid
proteins and is predominantly expressed in Purkinje cells
[59,60] and stabilizes the glutamate transporter, excitatory
amino acid transporter (EAAT4), at the plasma membrane
[58]. SPTBN2 mutations were found to cause impaired
axonal transport in Drosophila [61]. In addition, the loss
of β-III spectrin reduced the spontaneous firing rate in
surviving Purkinje cells and deregulated the glutamatergic
neurotransmission in mice [62]. Clarkson and colleagues
found that a β-III spectrin L253P mutation interferes
with binding to Arp1, a subunit of the dynactin-dynein
complex, and disrupts protein trafficking of both β-III
spectrin and EAAT4 from the Golgi [63]. However, the
precise mechanism of β-III spectrin function has yet to be
elucidated.

Spinocerebellar Ataxia Type 6 (SCA6)
SCA6 is the most common subtype in ADCA type III and
the second most common subtype in all types of ADCA,
including ADCA Type I, ADCA Type II, and ADCA Type
III. Incidence of SCA6 varies in the worldwide population.
SCA6 is a late-onset and slowly progressive form of ataxia
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[6]. Some affected individuals can walk without any assist-
ance more than 20 years after disease onset [55,64,65]. A
prospective natural history study using affected SCA6
patients as well as patients from the three other subtypes
of ADCA Type I, including SCA1, SCA2, and SCA3 con-
ducted by European Integrated Project on Spinocerebellar
Ataxias revealed that the disease progression was slowest
in SCA6 [66]: increased SARA score [67] was 0.35±0.3 for
one year. The age of symptomatic disease onset is between
16 and 72 years (mean age: 45 years). Approximately 60%
of patients develop disease after age 50 years [5]. Pene-
trance is almost 100% [68]. Anticipation has not been
observed [69]. Disease duration can be more than 25
years. SCA6 is mainly characterized by cerebellar signs as
well as eye movement problems, such as gaze-evoked nys-
tagmus, downbeat nystagmus, impaired vestiblo-ocular re-
flex, and impaired smooth pursuit. The majority of SCA6
patients develop gait ataxia as an initial symptom. Some
patients manifest episodic vertigo, diplopia, and dysarthria
prior to gait abnormalities [70]. SCA6 occasionally pre-
sents with extracerebellar symptoms, such as pyramidal
tract signs [17] and peripheral neuropathy [3]. Occasion-
ally, cognitive impairment [71], parkinsonism character-
ized by bradykinesia [72], myoclonus, dystonia, tremor
including postural, action, and terminal tremor of
heads, or other movement disorders may be seen [73].
In addition, depression [74] and fatigue [75] may be
associated with SCA6. Head MRI reveals severe cerebel-
lar atrophy accompanied by mild atrophy of the middle
cerebellar peduncle, pons, and red nucleus [76,77]. Single-
photon emission computed tomography using N-isopro-
pyl-p [123I]iodoamphetamine shows decreased tracer
uptake in the cerebellum [78]. Positron emission tomog-
raphy studies with [18F]Fluorodeoxyglucose reveal that the
glucose metabolism rate was reduced not only in cerebel-
lum and brainstem, but also in cortical regions and basal
ganglia [79].
In 1997, Zhuchenko and colleagues identified small

expansions of the trinucleotide (CAG)n repeat in the
CACNA1A gene on chromosome 19p13, that encoded
the α1 subunit of a P/Q-type voltage-gated calcium
channel. Expanded alleles usually have 20 to 29 CAG
repeats [8,69,80], whereas the normal alleles have 4 to
18 repeats [80]. Mariotti and colleagues described that
affected subjects who were homozygous for an inter-
mediate allele of 19 CAG repeats in the CACNA1A gene
[81]. CACNA1A exists in granule cells and Purkinje cells
of the cerebellar cortex. The central role of CACNA1A
is thought to be in synaptic transmission. It is assumed
that polyglutamine repeats in CACNA1A effects Ca2+

channel to reduce Ca2+ influx, leading to eventually cell
death [82]. The polyglutamine repeats in SCA6 are
much smaller than in others harboring polyglutamine
expansion SCAs [83]. It has yet to be determined
whether such small expansions can cause pathological
effects in normal CACNA1A function by altering the
calcium channel function or if it acquires a new toxic
function [84,85].
Spinocerebellar Ataxia Type 11 (SCA11)
SCA11 is another rare subtype of ataxia. To date, four
families, a British family from Devon, UK, a British
family of Pakistani ancestry, a German family, and a
French family, have been reported [86-88]. In two add-
itional studies, SCA11 was not observed in 68 unrelated
Han Chinese patients [89] or 48 unrelated familial cases
of German descent [90]. SCA11 presents with early-
onset, and slowly progressing cerebellar symptoms. The
age of symptomatic disease onset is between 11 and 70
years (mean: 25 years). This disease may have full pene-
trance [87]. Disease duration is over 20 years and some
cases remain ambulant for up to 16 years after onset
[88]. SCA11 is clinically characterized by cerebellar signs
and eye movement abnormalities, which include jerky
pursuit, ophthalmoplegia, and horizontal and vertical
nystagmus. Occasionally, affected patients manifest mild
to moderate hyperreflexia, especially in lower limbs but
with negative Babinski signs [87]. Peripheral neuropathy
and dystonia may also be seen [86]. Head MRI shows
isolated marked cerebellar atrophy [86,87].
In 1999, Worth and colleague mapped the locus on

chromosome 15q14-21 in two British families with the
ADCA phenotype [86]. In 2007, Houlden and colleagues
identified two TTBK2 mutations, one is a 1-base insertion
of an adenosine in exon 13 at nucleotide 1329, codon 44;
another is a frameshift deletion of a 2-base guanine and
adenosine in exon 13. TTBK2 mRNA is expressed in all
brain regions, especially in Purkinje cells, granular cell
layer, hippocampus, midbrain, and the substantia nigra
[87]. TTBK2 phosphorylates the tau protein and stabilizes
Purkinje cells [87]. Mutant TTBK2 interrupts normal
phosphorylation of tau protein and eventually causes tau
deposition, particularly in Purkinje cells.
Spinocerebellar Ataxia Type 26 (SCA26)
SCA26 is very rare subtype. Only one American family
of Norwegian descent has been reported. This family has
23 affected family members and 14 at-risk members
[91]. The age of symptomatic disease onset is between
26 and 60 years (mean of 42 years) without anticipation.
Disease duration is still unknown. SCA26 presents with
relatively late-onset, slowly progressive cerebellar symp-
toms and eye movement abnormalities. Eye movement
abnormalities are characterized by impaired pursuit and
nystagmus. Only one patient presented with left-sided
hyperreflexia with positive Babinski sign. Head MRI
showed isolated cerebellar atrophy.
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In 2005, Yu and colleagues mapped a 15.55-cM locus
on chromosome 19p.33.3 by a genome-wide linkage ana-
lysis of a large American family with the ADCA pheno-
type [91]. This locus is closed to CACNA1A, the causative
gene for SCA6; however, CACNA1A is also about 19-cM
centromeric to locus of SCA26. The responsible gene for
SCA26 is still unknown.
Spinocerebellar Ataxia Type 30 (SCA30)
SCA30 is very rare subtype and only one Australian family
with six affected subjects has been reported to date [92].
The age of symptomatic disease onset is between 45 and
76 years (mean 52 years). SCA30 is clinically characterized
by relatively pure and slowly progressive cerebellar ataxia.
Several affected subjects had mild hyperreflexia in their
lower limbs. One case presented with gaze-evoked nystag-
mus. Another affected patient also had dystonia. Of note,
several deceased family members may have had parkin-
sonism according to family histories; although, the details
of their clinical features were unavailable. Head MRI
showed isolated atrophy of cerebellum, predominantly
superior and dorsal cerebellar vermis.
In 2009, Storey and colleagues mapped a 5-Mb locus

on chromosome 4q34.3-q35.1 by a genome-wide linkage
analysis of an Australian family with the ADCA pheno-
type [92]. The causative genetic mutation has yet to be
discovered.
Table 3 Clinical features of ADCA Type III

Subform N. of Pt References AAO
(range)

Clinica

Comm
(>50%

SCA6 465 [8,10,15,17,22,55,64,65,68,69,78,103-
111]

45
(16–72)

A, D,
nystag

Subform N. of Pt References AAO
(range)

Clinica

Comm

SCA5 31 [54,56,57] 33
(10–68)

A, D, IV

SCA11 21 [86-88] 25
(11–70)

A, D, IS
hyperr

SCA26 15 [91] 42
(26–60)

A, D, IS

SCA30 6 [92] 52
(45–76)

A, D, h

SCA31 114 [33,93,95-97] 58
(8–83)

A,D, ny

A: ataxia; AAO: age at onset; ADCA: autosomal dominant ataxia; CI: cognitive impair
gaze evoked nystagmus; ISP: impaired smooth pursuit; IVOR: impaired vestibulo-ocu
tract signs; SCA: spinocerebellar ataxia; SS: slow saccades; *: predominant in superio
beat nystagmus is frequent.
Spinocerebellar Ataxia Type 31 (SCA31)
SCA31 is rare subtype of ADCA type III except in Japan,
where it is the fourth most common form of ADCA
[33,93,94]. More than 20 families have been reported
from Japan to date [93,95,96]. SCA31 presents with a late-
onset progressive form of ataxia. The age of symptomatic
disease onset is between 8 and 83 years with mean of
about 58 years. The disease duration is more than 10 years
[94]. The phenomenon of anticipation is absent or prob-
ably mild [95]. This disease is believed to have incomplete
penetrance. [93]. SCA31 is clinically characterized by cere-
bral ataxia and eye movement abnormalities, such as hori-
zontal gaze nystagmus and impaired pursuit. Occasionally,
affected subjects manifest pyramidal signs [93], hearing
difficulties [93,96], and decreased vibration [93]. Occa-
sionally, tremor [94] may be seen. Head MRI showed glo-
bal atrophy of the cerebellum, but in a few cases cerebral
atrophy was also present [94].
In 2000, Nagaoka and colleagues mapped a locus to

chromosome 16q [95] by a genome-wide linkage analysis
of six Japanese families [95]. In 2004, Hirano and collea-
gues refined the candidate locus to a 1.25-Mb interval on
chromosome 16q22.1 [97]. This locus is also the candidate
interval of SCA4, though the clinical phenotypes differ
from each other. Ishikawa and colleagues identified a
single-nucleotide change in the PLEKHG4 gene in 109
affected patients and in 48 at-risk individuals from 52
families [98]; however, other studies failed to detect this
l phenotype Atrophy

on
)

Occasional
(10<, <50%)

Rare (<10%)

mus#
GEN IVOR, ISP, ophthalmoplegia, SS,

PTS, CI, myoclonus, dystonia,
tremor, rigidity, EA

Pancerebellar,
pons, cerebellar
peduncle, red
nucleus

l phenotype Atrophy

on (>50%) Uncommon (<50%)

OR, GEN DBN, hyperreflexia, resting
tremor, intension tremor, facial
myokimia, ophthalmoplegia,
tremor, DVS

Pancerebellar

P, nystagmus,
eflexia

ISP, DVS, GEN, IVOR Pancerebellar

P Nystagmus, hyporeflexia Pancerebellar

yperreflexia GEN, dystonia Pancerebellar*

stagmus, GEN DVS, Hyperreflexia, spasticity,
hearing difficulty, hyporeflexia,
tremor

Pancerebellar**

ment; D: dysarthria; DVS: decreased vibration sense; EA: episodic ataxia; GEN:
lar reflex; N: number; PN: peripheral neuropathy; Pt: patients; PTS: pyramidal
r and dosal cerebellar vermis; **: a few cases showed cerebral atrophy; #: down
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change in 16p22.1-linked ADCA patients [99,100]. In
2009, Sato and colleagues discovered 2.5 to 3.8 kb inser-
tions of penta-nucleotide repeats, (TGGAA)n, (TACAA)n,
and (TAAAA)n, on chromosome 16q21-q22 using south-
ern blot analysis and sequencing analysis in 160 affected
individuals from 98 families [101]. Among these repeats,
(TGGAA)n is thought to be pathogenic in Japanese sub-
jects. In the study of the European population, all expan-
sions had pure stretches of (TACAA)n, (GAAAA)n or
(TACAA)n in their expanded alleles, without any expan-
sion identified in Japanese series [102]. This repeat exists
in an intronic region shared by two genes, BEAN and
TK2. This insertion was not observed in control subjects
or in individuals with SCA4. The length of the insertion is
inversely correlated with the age at symptomatic disease
onset; therefore, the length of inserted TGGAA repeat
seems to be associated with the toxicity.
Clinical features of ADCA Type III are summarized in

Table 3.

Conclusions
In our review, we describe the clinical, genetic, molecu-
lar, and phenotypic aspects of ADCA Type III. There
has been remarkable progress in the understanding of
the genetic and molecular mechanisms associated with
ADCA. Additionally, genetic testing for this disease is
becoming less costly and more widely available due to
the technological advancements of genetic sequencing.
However, the Harding classification is still very import-
ant, because collecting the essential clinical phenotype
and selecting the most appropriate genetic tests are cru-
cial for the diagnosis of cerebellar ataxias. To remain
cost effective, this requires efficient clinical disease clas-
sification, such as Harding’s, and well-organized diag-
nostic criteria that narrow the diagnostic possibilities.
ADCA Type III is a rare group of neurodegenerative

disorders with the exception of SCA6. The clinical pheno-
type, pathological characteristics, and biomarkers asso-
ciated with ADCA Type III are still not well understood.
Moving forward, the greatest challenges for future re-
search are the identification of families with ADCA Type
III phenotype without known mutations, identification of
causative genes and pathogenesis, and the development of
specific treatments. Hopefully, such efforts will eventually
lead to the identification of curative treatments for ADCA
Type III.
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