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Abstract

With the advent of next-generation DNA sequencing, the pace of inherited orphan disease gene identification has
increased dramatically, a situation that will continue for at least the next several years. At present, the numbers of
such identified disease genes significantly outstrips the number of laboratories available to investigate a given
disorder, an asymmetry that will only increase over time. The hope for any genetic disorder is, where possible and
in addition to accurate diagnostic test formulation, the development of therapeutic approaches. To this end, we
propose here the development of a strategic toolbox and preclinical research pathway for inherited orphan disease.
Taking much of what has been learned from rare genetic disease research over the past two decades, we propose
generalizable methods utilizing transcriptomic, system-wide chemical biology datasets combined with chemical
informatics and, where possible, repurposing of FDA approved drugs for pre-clinical orphan disease therapies. It is
hoped that this approach may be of utility for the broader orphan disease research community and provide
funding organizations and patient advocacy groups with suggestions for the optimal path forward. In addition to
enabling academic pre-clinical research, strategies such as this may also aid in seeding startup companies, as well
as further engaging the pharmaceutical industry in the treatment of rare genetic disease.

Keywords: Orphan disease therapy, Preclinical drug development, Generalizable screening methods, Translational
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Introduction
Single gene disorders, which typically result from muta-
tions having severe effects on gene function, are of par-
ticular importance in pediatrics. A significant fraction of
pediatric hospital admissions involve genetic conditions
[1,2]. The curated Online Inheritance in Man (OMIM)
human genetics database currently lists over 3300 genes
for which DNA sequence variants have been associated
with human disease [3]. The Human Gene Mutation
Database (HGMD), using slightly different criteria, lists
approximately 3200 such genes [4]. Apart from a fraction
of curated variants arising from genome-wide association
studies with uncertain functional significance, the majority
of these annotations reflect medical conditions with either
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congenital or childhood onset. Optimal management of
patients suffering from these disorders entails both rapid
and accurate molecular diagnosis, and, where possible,
treatment. The advent of new high throughput, low cost
DNA sequencing technologies (so-called next generation
systems) has already and will continue to increase the effi-
ciency of new causal gene identification that will facilitate
their molecular diagnoses [5]. However, given the tremen-
dous variety of such disorders, their treatment remains an
intractable and difficult-to-generalize problem.
Genetic disorders of high penetrance are typically

caused by mutations that result in i) loss-of-function
(LOF), i.e., a reduction in the level and/or activity of a
given protein, usually seen in recessively inherited disor-
ders or ii) gain-of-function (GOF), i.e., an increase in pro-
tein level and/or activity with the introduction of a novel
pathological function often associated with activation of a
pathway, usually seen in dominantly inherited disorders
[4]. In broad terms, therapy in either case can be directed
at normalizing the pathogenic imbalance; that is to
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enhance mRNA, protein or protein activity in disorders
caused by LOF mutations and moderate the mRNA, pro-
tein, protein function, or pathway activity excess observed
in GOF mutations (Figure 1). Disorders with a molecular
test available for early diagnosis and a presymptomatic
window or likelihood of clinical reversibility are potential
candidates for therapeutic intervention by this strategy.
In the case of LOF mutations, a functional agonist may

be considered, for example via DNA (e.g., gene therapy) or
protein replacement (e.g. enzyme replacement therapy).
For partial loss of enzymatic function, exogenously increas-
ing levels of the biochemical substrate may be feasible. For
some LOF mutations, it may also be possible, with anti-
sense oligonucleotides (ASO) or small molecules, to in-
crease the rate of transcription, correct RNA mis-splicing,
allow read through of a premature stop codon, stabilize the
transcript, or stabilize or enhance the activity of the
mutated protein itself. Finally, for this class of mutation,
there may be the option of activating a wild-type homolo-
gous gene, thereby recapitulating the function lost in the
primary gene mutation, an approach which we term acti-
vating the “rescuing paralog”. Conversely, in the case of
GOF mutations, a functional antagonist may have clinical
value. The therapeutic reduction of the supraphysiologic
levels of pathogenic RNA, protein and/or function may be
achievable directly by transcriptional or translational inhib-
ition, transcript or protein destabilization, or by direct
inhibition of the activity of the protein itself. Alternatively,
instead of targeting the gene and its products, the modula-
tion of pathogenically dysregulated pathways by substrate-
reduction therapy or product replacement therapy are
possible treatments for many LOF and GOF orphan
disorders.

Therapeutic approaches for loss-of-function (LOF) mutations
LOF: Pharmacologic suppression of premature termination
codons (PTC)
The nature of the specific LOF mutation may suggest spe-
cific therapeutic approaches, for example a number of
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Protein A
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Figure 1 Normalizing the pathogenic imbalance. Protein levels and/or
monogenic disease. Therapeutic approaches may involve normalizing this
disorders caused by LOF mutations and moderating the mRNA, protein, or
drugs are currently being investigated which result in
read-through of premature termination codons (PTCs)
[6]. These agents reduce ribosome termination at the
PTC, resulting in the insertion of a random amino acid
and the translation of the remainder of the correct full-
length protein. There are a number of limitations to this
approach including reduction of the available transcript
because of nonsense-mediated mRNA decay, efficient
translation and the activity of the protein containing the
random amino acid [6,7]. Nonetheless, read through indu-
cing agents show promise for Duchenne muscular dys-
trophy (DMD) and cystic fibrosis (CF) [8-10] with the
potential of eventually treating a wider range of genetic
disorders. The current exemplar of nonsense codon sup-
pression is the small molecule PTC124. PTC124 sup-
presses nonsense mutations at nanomolar concentrations
in mammalian cells (but does not appear to alter global
protein or mRNA profiles) and is associated with some
phenotypic improvement in mouse models with Du-
chenne muscular dystrophy and cystic fibrosis [6,10,11].
Both diseases have had PTC124 Phase I trials conducted;
Phase II clinical trials of PTC124 administered to cystic fi-
brosis patients that carry nonsense mutations have also
been completed, with restoration of measurable CFTR
function in half of treated patients and no appreciable im-
pact on CFTR in a second study [12,13]. More recently,
PTC124 treatment improved total chloride transport and
showed trends toward improvements in pulmonary func-
tion and CF-related coughing in a subset of patients with
classic CF phenotype and at least one CFTR nonsense
mutation allele [14].
In principle, any nonsense mutation that does not trig-

ger significant nonsense-mediated mRNA decay is a can-
didate for this approach [15]. A challenge in this field is
whether there will be a general in silico approach to
identify small molecules allowing read-through for a
given PTC sequence, or whether painstaking and expen-
sive library screening will be needed to identify an agent
for each particular disease-causing PTC. Drugs, such as
GOF

ctivity Level

 Normalization Strategy

activity outside of the physiological normal range usually underlie a
imbalance by enhancing the mRNA, protein, or protein activity in
protein function excess observed in GOF mutations.
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PTC124, that permit read-through of a wide spectrum of
stop codons clearly carry a risk of off-target side effects.
The expectation in the field is that there may exist unify-
ing principles for the targeting, combined with minimal
chemical modification and appropriate dosing, to impart
sufficient specificity to minimize such side effects.

LOF: Therapeutic oligonucleotide based modulation of
splicing
Another class of therapeutic targets comprises the
large number of disease-causing mutations occurring
in splice site motifs [16]. Such mutations may be in-
tronic or exonic and typically result either in exon
skipping and/or use of nearby alternative splice donor
or acceptor sites. This results in the deletion of po-
tentially important parts of the encoded protein or,
more frequently, exon skipping or mis-splicing result-
ing in frame shifting errors and resulting aberrant
polypeptide with partial or total loss of protein func-
tion. Chemically modified oligonucleotides can steric-
ally mask pathogenic splice signals activated by
mutation resulting in close to normal levels of mRNA
encoding functional protein [17]. Alternatively, in
some cases they can be designed to mediate forced
splicing exclusion of functionally dispensable in-frame
exons containing a pathogenic mutation, resulting in
the production of near physiologic levels of internally
deleted but partially functional proteins [18]. The ap-
plication of oligonucleotide-based methods to redirect
and modulate pre-mRNA splicing was first demon-
strated for β-thalassaemia and now shows promise for
both spinal muscular atrophy (SMA) [19] and DMD
[20,21]. The design of effective oligonucleotides for
this process is undergoing continuous improvement;
there now exists both a considerable published body
of experience as well as a ‘splicing code’ that relates
genomic features to splicing levels in diverse normal
and disease tissues, including predictive analyses of
how genomic mutations impact splicing [22,23].
There has been recent progress in utilizing the spli-
cing code to identify disease associated mutations in
HGM (unpublished data, Frey); it is hoped that the in
silico identification of disease-causing splice mutations
is a realistic goal for the future. Given the increased
predictability of the oligonucleotide action on splicing
mutations, a central issue is to determine to what ex-
tent the absorption, distribution, metabolism, and
excretion- toxicity (ADME-tox) characteristics of a
given oligonucleotide shall also be predictable; is
oligonucleotide ADME-tox a general drug class effect
for a given type of chemical modification, minimizing
expensive preclinical assessment or is it sequence-
dependent, varying from molecule to molecule [24]?
Further understanding of this cause and effect
relationship will emerge as this approach is applied to
more disorders.

LOF: Pharmacologic modulation of gene activity, mRNA
stability and protein function
Therapeutic upregulation in LOF mutations may be feas-
ible when i) the mutated protein retains some degree of
residual function; ii) the disease is caused by a haploinsuf-
ficiency; iii) there exists a paralogous normal protein that
functionally recapitulates the mutated protein; or iv) there
is a protein that mediates a bypass salvage pathway. The
general goal in such cases is to increase effective gene
function, either directly by modulating the residual expres-
sion level or enzymatic activity of the mutated protein itself,
or indirectly by upregulating other genes in the genome
which themselves may be paralogs of the mutated gene or
else active in related biochemical pathways. The introduc-
tion of a drug into the complex intracellular and extracel-
lular topography of a human will have, in addition to the
impact on its known target, off-target and, from the per-
spective of orphan genetic disease, potentially beneficial
effects. These effects may include the up or down regula-
tion of multiple non-targeted genes, mRNAs or proteins.
Indeed, it has been recognized in recent years that small-
molecular weight molecules can affect a substantial pro-
portion of the metazoan transcriptome [25,26]. Although
such off-target gene modulating effects are currently im-
possible to predict, the advent of systems biology has
begun to permit these effects to be identified with greater
effectiveness.
An excellent opportunity to identify beneficial off-target

effects comes with novel microarray based databases con-
taining system-wide transcriptome profiles from cell lines
grown in the presence of clinically used compounds. This
approach has been utilized to catalogue system-wide gene
expression profiles elicited by different drugs and drug
classes [26-29]. In addition to identifying genomic signa-
tures composed of many transcripts to elucidate drug
effects, with these databases one can also ascertain the im-
pact of hundreds of FDA approved drugs on the level of
almost every individual transcript in the transcriptome. It
is the modulation of individual transcripts that is of par-
ticular value for monogenic disorders. For example, we
have mined the Johnson and Johnson and Connectivity
Map databases [26] for agents that modulate SMN2
mRNA levels, the rescuing paralog for spinal muscular at-
rophy (SMA; OMIM [253300]), rapidly identifying a role
for p38 kinase in the modulation of SMN levels [30]. This
approach not only identifies agents that impact transcrip-
tional activity but also those that impact transcript stability
as well, such as is seen with p38 activation on SMN2 [30].
The same in silico screening approaches can be used to
identify agents that upregulate mRNA encoding mutated
proteins with residual function, such as seen in milder
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variants of a recessive disease; given the low levels of pro-
tein frequently observed in these disorders, even a modest
increase in activity might be anticipated to have a clinically
appreciable effect. Similarly, for disorders caused by hap-
loinsufficiency, upregulation of the remaining normal al-
lele may also yield a clinically beneficial effect. It is likely
that industry has additional system-wide transcriptional
databases that catalogue the impact of large numbers of
preclinical and/or clinically used agents. Similarly there
exist hundreds of genes which if significantly modulated
would have a good likelihood of impacting rare genetic
disease. Thus, one goal is to enable improved access to
both public and private datasets to expand the set of genes
that are both pharmacologically responsive and clinically
relevant (Figure 2).
An alternative method of identifying compounds to

modify clinically relevant genes is to perform a computa-
tional screen for binding sites of pharmacologically indu-
cible transcription factors upstream of the gene of
interest. Returning to the example of spinal muscular
atrophy, the complementing SMN2 paralog contains in
its 5’ region a number of STAT5 kinase binding sites; it
has been recently shown that the STAT5 activating hor-
mone prolactin both upregulates SMN protein derived
from SMN2 and confers significant survival benefit in a
mouse model of SMA [31]. The increasing annotation of
system-wide transcription factor binding sites via large
CHIP-Seq datasets, wedded with knowledge of agents
activating these transcription factors augur well for the
wider applicability of this approach.
Limitations do exist to the pharmacologic upregulation

of gene activity and mRNA level. The potential strength of
systems-wide transcriptional profiling comes with the
large number of addresses that are sampled; however, the
reproducibility of data for a single microarray address is
famously unreliable and it is a case of caveat emptor when
All mRNAs

‘Pharmacologically
Responsive’      

mRNAs

Disease
Modulating

mRNAs

Figure 2 Pharmacologically responsive therapeutic targets. mRNA
(and thus proteins) which are both pharmacologically responsive and
disease modulating represent potential therapeutic targets.
utilizing such data. Clearly even before any demonstration
of clinical utility, the more independent verification of a
given observation from different datasets, the more likely
it is to be reliable. Protein modulation is the goal in most
rare disease therapeutic approaches and there are not yet
systems-wide databases documenting protein levels/activ-
ity. Regardless, mRNA serves as a valid proxy for protein
level more often than not [32]. In addition, even if a pro-
tein:RNA correlation is observed in vitro, a given tran-
script response detected in cell culture may not hold true
for a whole organism. It also has to be hoped, when upre-
gulating mutated mRNA and protein, that both are stable
and not degraded as can be seen in inherited disorders.
Moreover, this approach will not work if the mutated pro-
tein has any dominant negative effect. Finally those small
molecules which significantly perturb a large proportion
of the transcriptome may have a greater incidence of side
effects or toxicity than do molecules with milder perturb-
ing effects. For example, histone deacetylase inhibitors
such as valproic acid have a significant impact on a sub-
stantial proportion of the transcriptome and have simul-
taneously been suggested for use with a large number of
diverse disorders, yet have well documented toxic side
effects. The goal of identifying an agent which modulates
a specific target in an entirely safe fashion continues to
represent a significant challenge.

LOF: In silico cheminformatic and bioinformatic methods
for target proteins
The complex topology of proteins, and the lack of a
comprehensive algorithmic mapping of primary amino
acid sequences to three-dimensional structures, makes
generalizable approaches to protein functional modula-
tion problematic. Nevertheless, proteins represent a far
more frequent therapeutic target for orphan diseases
than mRNA. Diverse in silico cheminformatic and bio-
informatic methods, including target/ligand-based strat-
egies and systems biology methods, are a means of
screening large datasets in the hopes of predicting the
binding of molecules to proteins [33-40]. Data integra-
tion platforms for systems biology, using both ligand
and binding site similarity [36,41,42] can help chaper-
onin identification, possibly involving drug reposition-
ing. In addition, 2D ligand and 3D protein based
approaches employing algorithms and networks, have
been used to link molecular structure and biological ac-
tivity [43-45]. The continual development of machine
learning methods and databases for drug repurposing
also have promise [46-50]. By connecting data on drugs,
proteins and diseases, these various computational
methods may enable repurposing of molecules and pos-
sibly enable in vitro screening efforts for orphan disease
therapy [51-55]. Implicit in using these molecular, pro-
tein and gene expression databases is the requirement
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that the data are sufficiently free from error so as not to
hamper the quality of the prediction [56].
Perhaps the best categorized area of protein modulation

is pharmacologic chaperone therapy: small molecules that
specifically bind to target proteins modulating folding and/
or stability [57-61]. This approach is currently either being
investigated or used for various orphan conditions, particu-
larly lysosomal storage disorders [60,62]. Pharmacological
chaperones stabilize the folding of mutant proteins and
allow for correct trafficking of the enzyme, often resulting
in increased egress from the Golgi to the cytosol or cell sur-
face. Molecules that would be predicted to inhibit the lyso-
somal enzyme counterintuitively often serve as protein
stabilizers and de facto enzyme activators with therapeutic
potential; presumably the negative effect of competitive in-
hibition for substrate binding is more than offset by the
positive effect of increased correct protein folding on total
enzyme produced [61]. Such observations serve as a key
starting point for drug development for other enzymes
besides those involved in lysosomal storage diseases; a con-
siderable proportion of molecularly characterized mono-
genic genetic disorders involve enzymes and present
with aberrant, often life-threatening metabolomic profiles
(e.g. phenylketonuria).
High content cellular screening for compounds leading

to correction of mutated trafficking anomalies, may be
one robust route to active pharmacologic chaperones al-
though given the cost of these approaches the preferable
scenario would include a relatively common or recurrent
causal mutation (which are often seen in local and even
large founder populations) and a good in silico lead into
a compound class.
In this context, RNAi approaches with cellular screens

for protein localization may identify currently unappreci-
ated genes that would have a broad impact on folding of
mutated polypeptides, irrespective of specific mutation or
even particular protein involved. Once identified, altered
regulation of such genes by the approaches described
above might be clinically beneficial for a wide range of
genetic disorders involving missense mutations and aber-
rant protein folding. Finally, modulation of the specific
function of a mutated protein can be obtained, as has
recently been documented in a successful clinical trial of
CFTR conductance modulators for cystic fibrosis [63].

LOF and GOF: Pathogenic pathway modulation
Regardless of the underlying genetic lesion, there is usually
a dysregulation of a biochemical/metabolic/intracellular
pathway that is the primary pathogenic driver of a given
disorder. Identifying the pathway underlying disease patho-
genesis, along with an understanding of the nature of the
dysregulation, brings with it the opportunity for thera-
peutic pathway modulation. The intervention is clearly
contingent upon the specific pathway involved and thus is
less open to generalizable methods, although the approach
may allow for a common intervention to be used for differ-
ent disease genes that are within the same pathway. None-
theless, dysregulated pathways may for many disorders,
represent the most accessible and relevant therapeutic tar-
gets. The pathogenic effect may be as simple as a build-up
of a toxic substrate or dearth of a critical product in a
metabolic pathway; in such cases, means of reducing the
former and increasing the latter are obvious therapeutic
approaches. For example, the zinc deficiency observed in
acrodermatitis enteropathica can be addressed by dietary
supplementation [64,65], while the accumulation of a toxic
metabolite may be addressed by dietary means, such as the
phenylalanine restriction used to treat phenylketonuria
[62]. Where dietary modification is either not possible or
insufficient, modulation of the activity of an alternate path-
way may be employed as a possible adjunctive therapy.
One example is the recessive Tay Sachs disease (TSD),
resulting from mutation in the HEXA gene encoding the
α subunit of the lysosomal enzyme, β-hexosaminidase
[66]. The enzyme mediates breakdown of GM2 ganglio-
side; its loss results in GM2 accumulation and progres-
sive neurodegenerative disease. There exists a metabolic
bypass, mediated by Neu1/PPCA or Neu3 sialidase
enzymes, which can also break down GM2 ganglioside;
thus, the pharmacologic induction of these genes might
be therapeutic in TSD [67].

LOF: Other translational approaches
Completing the list of promising orphan disease treat-
ments for LOF mutations are enzyme replacement and
gene replacement therapies. Enzyme replacement is a
proven approach (although neurologic correction remains
elusive due to the impermeant blood brain barrier) and
gene therapy after a period of disappointments appears to
be coming of age. Unfortunately these approaches remain
research intensive and likely prohibitively expensive for the
treatment of a large number of very rare disorders. Exten-
sive research is ongoing within these fields and the hope is
that they will eventually become more viable options, but
they are not the focus of our current translational path.

Therapeutic approaches for gain-of-function (GOF) mutations
XGain-of-function mutations, usually dominantly inher-
ited, are caused by a supra- and thereby pathophysiolo-
gic level of mRNA/protein and/or a novel pathologic
gain-of-function. There are a number of methods to
moderate the mRNA, protein, novel protein function, or
pathway activity excess observed in GOF mutations.
Oligonucleotides generated using novel second- and
third-generation backbone-modifications can reduce
RNA and thus protein by at least 11 distinct mechan-
isms, including the direct sequence-specific steric block
by hybridization to pre-mRNA (RNAi), the alteration of
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pre-mRNA splicing, hybridization to processed mRNAs
thereby preventing ribosome recruitment, and the
blockage of protein translation [68]. Oligonucleotides
can also inhibit the actions of non-coding RNAs such as
microRNAs. In addition to antisense oligonucleotides
(ASOs), one can also screen for pharmacologic (in this
case down regulatory) modulation of the transcriptome
such as outlined above for LOF mutations or screen for
pharmacologic direct inhibitors of protein function also
using the in silico approaches outlined in the previous
section. Screens for small molecules binding to the GOF
protein itself could be done both through high-
throughput screens or in silico modeling.
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termed the RASopathies caused by (usually) activating
mutations of the RAS-RAF-MEK-ERK MAPK pathway
[69,70]. The most common of these is Noonan syndrome,
characterized by proportional short stature, facial dys-
morphia, and cardiovascular abnormalities. A clinical trial
with the MEK1/2 inhibitor (also being trialed for several
malignancies) for treatment of cardiomyopathy in adults
with Noonan syndrome has recently been launched (Clini-
calTrials.gov Identifier: NCT01556568); the hope is that
other kinase inhibitors will find their way from cancer trials
into orphan disease trials.
A schematic outlining the approaches and the pro-

posed translational research path for both LOF and GOF
classes of mutation is summarized in Figures 3 and 4.

The path following potential therapeutic agent
identification
Following the in silico identification of a putative
therapeutic agent, the confirmation of the proposed
effect both in cell cultures and in vivo will be
required. We have found that this assessment can be
done both in wild-type and patient cell lines (using
Normal homolog 
protein

Small Molecule Induction

Upregulate  paralIncrease levels

Rescuing PaPartial LOF Mutation/
Haploinsufficiency

DNA

mRNA

Protein

Normal protein Hypomorphic prote

Small Molecule Stabilization

Figure 4 Therapeutic approaches based on small molecules and ASO
genes. Haploinsufficient or partially functioning proteins can be upregulate
gene has a homolog with overlapping function, the homolog can be upre
rescuing paralog). ASOs have the potential to modify pre-mRNA splicing or
to correct splicing. Conversely, genes with overexpression or with gain-of-f
either immortalized fibroblasts or lymphocytes, or
with new induced pluripotent cell (iPS) technology)
as well as wild-type animals in addition to animal
models of a given disorder. For example, an increase
of the protein level and/or activity in LOF mutations
(or diminution of these parameters for GOF muta-
tions) in wild-type cells and animals can be suggest-
ive of a true effect. The presence of a scorable
phenotype in patient cell cultures as well as a bio-
marker in the animal models (and naturally the
human disease), help further in the assessment of
the proposed therapy. The summary outlined in
Table 1 highlights the various resources that will be
of assistance for this phase of disease pathogenesis
and preclinical research.

Conclusion
Translational research for rare diseases is clearly a re-
source intensive undertaking, both in terms of time and
real cost. Therefore, as much as possible, we have
attempted to define an approach that relies on databases
and computational analyses prior to the more expensive
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ASO Modulation
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Reduce levelsCorrect splicing
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s. Small molecules have the potential to regulate the expression of
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expression. Cryptic splice sites caused by mutations can be blocked
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Table 1 Translational toolbox: Conditions and resources
that will enable effective orphan disease translational
research

Critical
Information

Known Gene

Known Inheritance (dominant or recessive)

Known Mechanism (LOF or GOF)

Helpful
Information

Existence of a presymptomatic window or likeliness
of clinical reversibility

Dysregulated pathway known

Diagnostic assay associated with primary
defect available

Purified protein available

Protein crystal structure known

Antibody directed against protein available

Previous screen related to disease gene exists (screen
for pharmacologic modulation, ASO screening, etc)

Gene under control of transcription factors responsive
to drugs

Scorable cell culture phenotype exists

Animal or other model available

Scorable biomarker reflecting disease state exists
(metabolomic, transcriptomic marker, etc)

Disease management protocol in use
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experimental validation of potential therapies (examples
of potential new therapies for rare diseases identified
using these approaches are listed in Table 2). This is es-
pecially important when a disease is so rare as to render
the prospects of any commercial profit from a therapy,
regardless of its effectiveness, unlikely. Thus, an import-
ant issue is the question of generalization of approach
and minimization of costs. Key steps in this direction in-
clude access to system-wide datasets, compounds and
reagents for the orphan disorder research community,
advances in both systems biology and computational
prediction of small molecule-macromolecule interaction,
the identification of additional generalizable therapeutic
approaches and ultimately more collaboration.
Table 2 Examples of computational technologies used for rar

Strategy Rare disease Computa

Small Molecule Upregulation Spinal Muscular Atrophy Connectiv

Small Molecule Upregulation Spinal Muscular Atrophy Transcript
site ident

Chaperone: drug
safety predictions

Gaucher disease Leadscop

Chaperone: identify binding
sites and compounds

Huntington disease AutoDock
Server, Ca

Drug similarity predictions Neurodegenerative disorders
due to protein misfolding

Mode of
Analysis, M

Prediction of which mutations
respond to treatment

Fabry disease Position s
substitutio
Accessibility to a greater pharmacophoric compound
library space, data currently existent in pharmaceutical
companies and readily available reagents
There currently exists, in major pharmaceutical com-
panies, extensive databases describing the system-wide
transcriptional response to thousands of compounds,
the vast majority of which have not seen clinical use.
Although most of these compounds are designed for
proteases, kinases and G-protein coupled receptors,
mining these datasets and subsequent access to those
compounds that modulate orphan disease related
transcripts might serve as a source of rare disorder
therapeutic leads. In addition there does not yet exist
a definitive gold standard transcriptomal database to
mine computationally for FDA approved drugs; the
configuration of such an entity would be of signifi-
cant value. Finally, but of no less importance, is the
key set of reagents that needs to be generated for as
many orphan diseases as possible to encourage re-
search in that area by the community. Purified pro-
tein, crystal structures, antibodies as well as cellular
and animal models, will both help advance the pro-
spects of meaningful translational research as well as
enlist new research teams into the field of rare gen-
etic diseases.

Computational prediction of small molecule-macromolecule
interaction
Computational advances are also needed in the predic-
tion of small molecule-RNA/protein interactions includ-
ing the identification of agents that suppress PTCs, bind
and then stabilize, destabilize or antagonize protein ac-
tivity. Improved prediction of the splicing impact of rele-
vant genomic mutations and of optimal antisense
oligonucleotides that may reverse the effects of such
mutations would also be of value.

Additional generalizable therapeutic approaches
A key aspect of any broadly successful approach for
this class of disease will be to conceive and employ
e disease drug discovery

tional Technology Drug Reference

ity Map Anisomycin [30]

ion factor binding
ification

Prolactin [31]

e Core structures of aminoquinoline,
sulfonamide, and triazine

[71]

, Patch Dock
stP

Metoprolol, minocyclines, and
18 F fluorodeoxyglucose

[72]

Action by Network
ANTRA

Fasudil [27]

pecific
n matrix

1-deoxy-galactonojirimycin [73,74]
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generalizable methodologies wherever possible. Some
examples of these include the possibility of generaliz-
ing ADME-toxicology for oligonucleotides, identifying
novel broad spectrum PTC suppressor compound
classes or possibly identifying a druggable pathway
that allows persistence of higher levels of non-toxic,
partially functional misfolded proteins.
While the approaches we propose here are credible

and feasible, the prospect of a rapid configuration of nu-
merous effective orphan disease therapies should be
viewed in perspective. Two of the most “common” rare
diseases, CF and DMD, have been the subject of many
years and millions of dollars of pre-clinical and clinical
assessment; indeed many of the approaches outlined
above have been pioneered in the analysis of these disor-
ders, yet there is today still not an effective therapy in
routine clinical use for either disorder. Nonetheless, we
hope that among the many genetic disorders that have
been or will shortly be molecularly characterized; there
will be some that are tractable to the approaches
reviewed here. At a minimum, the generation of a stan-
dardized toolbox will help to move a larger number of
disorders closer to the day of effective therapy.
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