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Gaucher disease and the synucleinopathies:
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Abstract

Gaucher disease (OMIM 230800, 230900, 231000), the most common lysosomal storage disorder, is due to a
deficiency in the enzyme glucocerebrosidase. Gaucher patients display a wide spectrum of clinical presentation,
with hepatosplenomegaly, haematological changes, and orthopaedic complications being the predominant
symptoms. Gaucher disease is classified into three broad phenotypes based upon the presence or absence of
neurological involvement: Type 1 (non-neuronopathic), Type 2 (acute neuronopathic), and Type 3 (subacute
neuronopathic). Nearly 300 mutations have been identified in Gaucher patients, with the majority being missense
mutations. Though studies of genotype-to-phenotype correlations have revealed significant heterogeneity, some
consistent patterns have emerged to inform prognostic and therapeutic decisions. Recent research has highlighted
a potential role for Gaucher disease in other comorbidities such as cancer and Parkinson’s Disease. In this review,
we will examine the potential relationship between Gaucher disease and the synucleinopathies, a group of
neurodegenerative disorders characterized by the development of intracellular aggregates of a-synuclein. Possible
mechanisms of interaction will be discussed.
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Review
Overview of Gaucher Disease
Gaucher disease (OMIM 230800, 230900, 231000), the
most common lysosomal storage disorder, is character-
ized by a spectrum of signs and symptoms caused by
the defective hydrolysis of glucocerebroside. A deficiency
in the enzyme glucocerebrosidase (GBA, glucosylcerami-
dase, acid b-glucosidase, EC.3.2.1.45) leads to the accu-
mulation of its glucocerebroside substrate in the liver,
spleen, and bone marrow. The predominant symptoms
are hepatosplenomegaly, haematological changes, and
orthopaedic complications [1,2]. Gaucher disease has
been classified into three phenotypes based upon the
presence or absence of neurological involvement: Type
1 (non-neuronopathic; most common form), Type 2
(acute neuronopathic) and Type 3 (subacute neurono-
pathic) [3].

The GBA gene, located on chromosome 1q21-22, is
comprised of 11 exons encoding a 497 amino acid pro-
tein. Presently, nearly 300 mutations have been identified
in Gaucher patients, including frame-shift mutations,
point mutations, deletions, insertions, splice site muta-
tions, and recombinant alleles [2,4,5]. For the purpose of
genotype-phenotype correlations, many of these muta-
tions have been classified as “null,” “severe,” or “mild”
with respect to levels of glucocerebrosidase production.
Null mutations, such as c.84dupG (84 GG), do not direct
any enzyme production. Severe mutations, such as
c.1448T > C (L444P), produce enzyme but, when inher-
ited with a null or another severe mutation, are usually
associated with Type 2 or 3 disease. Mild mutations,
such as c.1226A > G (N370S), are those that are only
associated with Type 1 disease [6].
Gaucher disease is the first lysosomal storage disorder

to be successfully treated by enzyme replacement therapy
[7]. At present, alglucerase (Ceredase®, Genzyme Inc.),
imiglucerase (Cerezyme®, Genzyme Inc.), and velaglucer-
ase alfa (VPRIV™, Shire) have been FDA-approved for

* Correspondence: fchoy@uvic.ca
2Department of Biology, University of Victoria, PO Box 3020, Station CSC,
Victoria, BC, V8W 3N5, Canada
Full list of author information is available at the end of the article

Campbell and Choy Orphanet Journal of Rare Diseases 2012, 7:12
http://www.ojrd.com/content/7/1/12

© 2012 Campbell and Choy; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:fchoy@uvic.ca
http://creativecommons.org/licenses/by/2.0


treatment of Gaucher patients [8,9]. Alternative therapies
have also been developed. In 2003, substrate reduction/
inhibition therapy (miglustat, Zavesca®, Actelion Phar-
maceuticals) was FDA-approved for adult patients unsui-
table for enzyme replacement therapy [10]. Other
treatment avenues under exploration are stabilization of
the mutant lysosomal protein through chaperone therapy
and introduction of wildtype glucocerebrosidase genes
through gene therapy [11].
Recent research has highlighted a potential role for

Gaucher disease in other comorbidities such as cancer
and Parkinson’s disease. In this review, we discuss the
emerging relationship between Gaucher disease and the
synucleinopathies, a group of neurodegenerative disor-
ders characterized by the development of intracellular
aggregates of a-synuclein.

Overview of the Synucleinopathies
The synucleinopathies encompass a group of various
neurodegenerative disorders that share a common
pathologic lesion comprised of aggregates of a-synuclein
protein in vulnerable populations of neurons and glia
[12]. The synucleinopathies discussed in this review are
Parkinson’s disease, dementia with Lewy bodies, multi-
ple system atrophy, and neurodegeneration with brain
iron accumulation.
The synuclein family consists of soluble proteins char-

acterized by an acidic carboxyl terminus and five to six
imperfect repeat motifs (KTKEGV) distributed through-
out the amino-terminus. The members range in length
from 127 to 140 amino acids [12]. Initially described in
1988, the first synuclein family member (a-synuclein)
was purified from the Torpedo electroplaque and from
rat brain [13,14]. It was also later named the nonamy-
loid component (NAC) of plaque precursor protein after
the NAC peptide was isolated from amyloid-rich senile
plaques of Alzheimer patient brains [12,14]. The a-
synuclein gene has been mapped to chromosome
4q21.3-q22 [14,15]. There are currently three additional
members of the synuclein family: b-synuclein, g-synu-
clein, and synoretin. The functions of the synuclein
family members remain poorly understood [12].

Gaucher Disease and Parkinson’s Disease
Parkinson’s disease (PD) is the second most common
neurodegenerative disorder, with greater than 1% affected
over 65 years of age and more than 4% of the population
affected by the age of 85 years [16,17]. Research indicates
that PD likely results from a combination of polygenic
inheritance, environmental exposure, and gene-environ-
ment interactions. Approximately 20% of PD patients
report a family history of the disease [17,18]. Tradition-
ally, PD has been defined by the presence of classic

motor signs: rigidity, tremor, bradykinesia, and postural
instability. However, recent evidence indicates that non-
motor characteristics such as autonomic insufficiency,
cognitive impairment, olfactory deficits, psychosis,
depression, and sleep disturbance are also common
occurrences [17]. The first gene (SNCA, PARK1 locus)
causally linked to PD was discovered via analysis of a
large multigenerational Italian family in which parkinson-
ism segregated in an autosomal dominant pattern [19,20].
Subsequently, a total of 18 PD loci (PARK 1-18) have
been proposed through linkage analysis and genome-
wide association studies [17]. Mutations within genes at
six of these loci (SNCA, LRRK2, PRKN, DJ1, PINK1, and
ATP13A2) have been directly linked to familial parkin-
sonism [21]. Recently, specific variations in the Gaucher
disease-associated gene GBA, which is not assigned to a
PARK locus, have been suggested as risk factors for PD,
as discussed below [22].
Over the past decade, several lines of evidence have

emerged implicating an association between parkinsonism
and mutations in the glucocerebrosidase gene. Recognition
of the relationship between GBA mutations and PD initi-
ally began in the clinic, with the identification of rare Gau-
cher patients with parkinsonian symptoms appearing in
case reports, larger patient series, and prospective studies
[22]. Moreover, pedigree analyses indicated an elevated
incidence of Parkinson’s disease in relatives of Gaucher
patients, many of whom were obligate heterozygotes
[23,24]. Additionally, multiple independent studies sur-
faced reporting an increased frequency of GBA mutations
in different cohorts with parkinsonism [25-30]. Despite
this evidence, early studies were often constrained by
small sample sizes or evaluation of only a few common
GBA mutations [31], complicating a consensus to label
GBA mutations as risk factors for typical Parkinson’s dis-
ease. In 2009, Sidransky et al. [22] published a hallmark
study on this topic: a collective analysis of 5691 patients
with PD complemented by 4898 controls from 16 centers
across 12 countries. For the pool of participants in which
the full GBA coding region was screened, loss-of-function
mutations were observed in 6.9% of cases and 1.3% of con-
trols (odds ratio, 5.4; 95% CI, 3.9-7.6). Among the Ashke-
nazi Jewish subset, higher mutation frequencies were seen:
19.3% in cases and 4.1% in controls [17,22]. The findings
were not exclusive to a specific ethnicity, nor associated
with any particular GBA mutation. Additional noted
trends were: subjects carrying mutations presented an
average of four years earlier, were more likely to have a
family history of PD, and had less bradykinesia and rest
tremor and more cognitive changes described [22]. Other
cohort studies have corroborated the results from this col-
laborative examination, reinforcing mutations in GBA as
the number one genetic risk factor for PD [22,32-34].
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Gaucher Disease and Dementia with Lewy Bodies
Like Parkinson’s disease, dementia with Lewy bodies
(DLB) is a common neurodegenerative condition asso-
ciated with abnormal aggregations of a-synuclein [12].
Five percent of non-institutionalized adults 85 years and
older are believed to suffer from DLB, and the disease
accounts for approximately 22% of all patients with
dementia [35,36]. The fundamental features of DLB are
dementia, fluctuating cognition (pseudodelerium), and
visual hallucinations with Parkinsonism [36,37]. Fre-
quently, patients with DLB have a rapid eye movement
(REM) sleep behaviour disorder in the form of lively and
often anxiety-filled dreams during the REM sleep phase,
which may be accompanied by motor symptoms. This
sleep behaviour disorder is characteristic for neurodegen-
erative disorders with pathological cerebral aggregates of
a-synuclein [38,39].
Once the potential relationship between Parkinson’s

disease and Gaucher disease was evident, researchers
expanded their investigations to assess whether GBA
mutations were associated with other Lewy body disor-
ders, such as DLB [40]. Initial findings from Goker-Alpan
et al. [41] found GBA mutations in 23% of brain samples
of 35 autopsy cases with DLB. A later study screening for
only c.1448T > C (L444P) and c.1226A > G (N370S)
mutations detected GBA alterations in 2 (3.5%) of 57
patients with DLB compared to 2 of 554 control subjects
(0.4%) [29]. Subsequent studies reported mutations in
GBA at frequencies ranging from 6% (n = 50) [42] to 28%
(n = 95) [43] of DLB cases. Collectively, these genetic stu-
dies suggest that GBA mutations represent genetic risk
factors for DLB [29,43]. Complementing these genetic
investigations, Parnetti et al. [44] recently reported a pro-
nounced decrease in GBA activity in cerebrospinal fluid
of DLB patients. A similar reduction in GBA activity has
been previously reported in PD [45]. This corroborates a
relationship between Gaucher disease and the two afore-
mentioned synucleinopathies, PD and DLB (Figure 1).

Gaucher Disease, Multiple System Atrophy, and
Neurodegeneration with Brain Iron Accumulation
Multiple system atrophy (MSA), a progressive neurode-
generative disorder, is characterized by autonomic failure,
poor levodopa-responsive parkinsonism, cerebellar ataxia,
and various pyramidal symptoms [46]. MSA-Parkinsonism
type is the most common Western Hemisphere pheno-
type, while MSA-cerebellar type is predominant in the
Eastern Hemisphere [47]. Mean survival is approximately
nine to ten years after onset of symptoms [48], with noc-
turnal sudden death being a major cause of mortality
[49,50]. MSA is commonly regarded as a primary oligo-
dendrogliopathy due to widespread glial cytoplasmic inclu-
sions [46,51]. These inclusions have demonstrated
immunoreactivity for a-synuclein, thus relating MSA to

other synucleinopathies such as Parkinson’s disease and
dementia with Lewy bodies [52-54]. Genetic studies have
revealed that variants in the a-synuclein-encoding SNCA
gene are major risk factors for MSA. Aside from the role
of the SNCA gene, however, the etiopathogenesis of MSA
has yet to be elucidated: interactions of genetic and envir-
onmental factors similar to other complex neurodegenera-
tive diseases are probable [46,55].
Like MSA, neurodegeneration with brain iron accumula-

tion (NBIA) falls under the synucleinopathy umbrella due
to various reports of associated a-synuclein accumulation
[56,57]. NBIA comprises a spectrum of progressive extra-
pyramidal disorders including the previously labelled Hal-
lervorden-Spatz syndrome as well as additional disorders
characterized by high levels of iron accumulation in the
brain [58,59]. Determining whether a patient has NBIA
and diagnosing a specific subtype may take several years,
while the phenotype and radiographic changes evolve. The
major form of NBIA, accounting for approximately 50% of
cases, is pantothenate kinase-associated neurodegenera-
tion (PKAN) caused by mutations in the PANK2 gene
[58-60]. Other NBIA disorders, such as aceruloplasminae-
mia, which is caused by mutations in the CP gene, and
neuroferritinopathy, which is caused by mutations in the
FTL gene, appear to affect specific, small NBIA sub-popu-
lations [61,62]. The drive to identify major causative genes
has helped refine the NBIA subtypes, providing clinicians
with a systematic approach to diagnosing and treating
these complex cases [59].
Though both NBIA and MSA are synucleinopathies,

they do not exhibit the strong relationship with Gaucher
disease seen in patients with Parkinson’s disease or

Figure 1 Synucleinopathies demonstrating a relationship with
Gaucher disease.
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dementia with Lewy bodies. For NBIA, significant pro-
gress was made from 2009 to 2010 in differentiating sub-
types according to genetic, radiologic, and clinical
findings [63]. However, no correlation with GBA has
been mentioned in the resulting literature. Interestingly,
most Gaucher patients are anemic due to the presence of
splenomegaly. Thus, they may have iron deficiency which
could minimize their risk for NBIA. For MSA, numerous
analyses have found that GBA mutations are not linked
to the disease, suggesting that this branch of the cera-
mide pathway is unlikely to be associated with all types
of primary a-synuclein deposition [41,46,64,65]. There-
fore, for NBIA and MSA patients, there does not appear
to be a need for modifying current genetic counselling
approaches or for clinicians to perform additional inqui-
ries about possible family members with Gaucher disease.

Mechanism of Interaction
Exposure of the relationship between Gaucher disease,
Parkinson’s disease and dementia with Lewy bodies has
generated a new challenge: to determine the mechan-
isms contributing to this association and why such an
association does not extend to all synucleinopathies.
Both gain-of- and loss-of-function explanations have
been proposed [22]. Recently, a prion theory has also
been suggested [66].
The gain-of-function theories have in common mis-

folded mutant glucocerebrosidase as the main culprit.
Misfolded GBA has been suggested to contribute to
neurodegeneration by inducing lysosomal insufficiency,
by impairing autophagic pathways necessary for degrad-
ing a-synuclein, or by overburdening the ubiquitin-pro-
teasome pathway [22,67]. Using cellular and in vivo
models, Cullen et al. [68] recently analyzed the effects of
wild-type and mutant GBA on a-synuclein. Results indi-
cated that GBA mutants promoted a-synuclein accumu-
lation in a dose- and time-dependent manner. In cell
culture models, the gain-of-function toxic effect was
mitigated by rapamycin.
According to the loss-of-function hypothesis, GBA hap-

loinsuffiency might cause its substrate glucocerebroside
and other polyunsaturated lipids to accumulate, altering
the cell membrane sphingolipid composition. Subse-
quently, this could disrupt membrane binding of a-synu-
clein, increasing its aggregation in the cytoplasm
[22,69,70]. Alternatively, elevated levels of glucocerebro-
sides could cause ryanodine receptor activation, leading to
a rise in intracellular free calcium, followed by cell death
and parkinsonism [66,71]. Mazzulli et al. [72] recently pro-
posed a more comprehensive mechanism whereby defi-
cient GBA leads to the accumulation of glucocerebroside
in neurons that in turn promotes the formation of toxic
a-synuclein oligomers. Elevated levels of the toxic a-synu-
clein species trigger depletion of lysosomal GBA and

further stabilization of the a-synuclein oligomers by gluco-
cerebroside accumulation, resulting in a self-propagating
positive feedback loop leading to neurodegeneration.
Another theory gaining momentum is the possibility

that PD is a prion disorder resulting from amplified pro-
duction and/or impaired clearance of a-synuclein,
prompting misfolding and the development of toxic oli-
gomers, aggregates, and cell death. Moreover, it is feasi-
ble that a-synuclein itself is a prion protein that can self-
aggregate and be transmitted to unaffected cells, thus
propagating the disease process [73]. The Gaucher cell
environment created by mutated glucocerebrosidase
could serve as a vehicle to enhance these events [66].
The aforementioned models, however, all exhibit lim-

itations. None can singlehandedly explain why only a
fraction of those with GBA mutations actually develop
PD or why carriers or patients with null GBA alleles can
develop parkinsonian phenotypes. Westbroek et al. [74]
suggest that the presence of aberrant glucocerebrosidase
and/or subsequent changes in enzyme activity and sub-
strate accumulation add to the pathology of a-synuclein
in a secondary fashion. Hence, GBA mutations may aug-
ment rather than initiate a-synuclein pathology. Conver-
sely, Sardi et al. [75] provide in vivo evidence that a
single point mutation in GBA can cause a-synuclein mis-
processing and cognitive deficits characteristic of synu-
cleinopathies. Both enzymatic loss-of-function and toxic
gain-of-function mechanisms were found to contribute
to the development of the Gaucher-related synucleinopa-
thies, and exogenous administration of glucocerebrosi-
dase corrected the observed pathological features.
Interestingly, Choi et al. [76] recently reported that
patients with GBA-associated synucleinopathies showed
aggregation of oligomeric forms of a-synuclein in SDS-
soluble brain fractions, while only monomeric forms of
a-synuclein were present in subjects with GBA mutations
without parkinsonism.

Conclusions
The high frequency of glucocerebrosidase mutations
among ethnically diverse cohorts of Parkinson’s disease
patients render mutations in this gene as one of the most
common and universally reported risk factors for PD [22].
It is also clear that a relationship exists between Gaucher
disease and dementia with Lewy bodies. However, this
association does not appear to extend to all synucleinopa-
thies. Presently, no link has been found between GBA
mutations and multiple system atrophy or neurodegenera-
tion with brain iron accumulation.
The clinical implications of this relationship, such as

modifications to genetic counseling or testing regimens,
will need to be addressed. Hruska et al. [77] recom-
mended that questions regarding parkinsonian symptoms
be included in Gaucher patient evaluations and that
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inquiries about relatives with Gaucher disease be made in
Parkinson disease clinics. However, caution was advo-
cated in translating the findings to the patient commu-
nity due to the low combined incidence and the potential
to generate alarm.
The mechanism behind the relationship between GBA

mutations and PD or DLB remains elusive. Gain-of-
function, loss-of-function, and prion theories have been
proposed. A better understanding of this link will pro-
vide new avenues for investigation, further clarification
of synucleinopathy family members, and the develop-
ment of novel therapies.
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